具有随机方向选择的 BML 模型中自组织的加载条件

IF 2.1 3区 数学 Q1 MATHEMATICS, APPLIED Mathematical Methods in the Applied Sciences Pub Date : 2024-08-26 DOI:10.1002/mma.10276
Marina V. Yashina, Alexander G. Tatashev
{"title":"具有随机方向选择的 BML 模型中自组织的加载条件","authors":"Marina V. Yashina,&nbsp;Alexander G. Tatashev","doi":"10.1002/mma.10276","DOIUrl":null,"url":null,"abstract":"<p>A dynamical system is considered such that, in this system, particles move on a toroidal lattice of the dimension \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>×</mo>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {N}_1\\times {N}_2 $$</annotation>\n </semantics></math> according to a version of the rule of particle movement in Biham–Middleton–Levine traffic model. We introduce a stochastic case with direction choice for particles. Particles of the first type move along rows, and the particles of the second type move along columns. The goal is to find conditions of self-organization system for any lattice dimension. We have proved that the BML model as a dynamical system is a special case of Buslaev nets. This equivalence allows us to use of Buslaev net analysis techniques to investigate the BML model. In Buslaev nets conception, the self-organization property of the system corresponds to the existence of velocity single point spectrum equal to 1. In the paper, we consider the model version when one notable aspect is that a particle may change its type. Exactly, we assume a constant probability \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation>$$ q $$</annotation>\n </semantics></math> that a particle changes type at each step. In the case where \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ q&amp;amp;amp;#x0003D;0 $$</annotation>\n </semantics></math>, the system corresponds to the classical version of the BML model. We define a state of the system where all particles continue to move indefinitely, in both the present and the future, as a state of free movement. A sufficient condition for the system to result in a state of free movement from any initial state (condition for self-organization) has been found. This condition is that the number of particles be not greater than half the greatest common divisor of the numbers \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mspace></mspace>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <mo>…</mo>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mi>n</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {N}_1,{N}_2,\\dots, {N}_n $$</annotation>\n </semantics></math>. It has been proved that, if \n<span></span><math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>=</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$$ n&amp;amp;amp;#x0003D;2 $$</annotation>\n </semantics></math>, and whether \n<span></span><math>\n <semantics>\n <mrow>\n <mn>0</mn>\n <mo>&lt;</mo>\n <mi>q</mi>\n <mo>&lt;</mo>\n <mn>1</mn>\n </mrow>\n <annotation>$$ 0&amp;amp;lt;q&amp;amp;lt;1 $$</annotation>\n </semantics></math> or \n<span></span><math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$$ q&amp;amp;amp;#x0003D;0 $$</annotation>\n </semantics></math> and there are both at least one particle of the first type and at least particle of the second type, then a necessary condition for a state of free movement to exist is the greatest common divisor of \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {N}_1 $$</annotation>\n </semantics></math> and \n<span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>N</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {N}_2 $$</annotation>\n </semantics></math> be not less than 3. The theorems are formulated in terms of the algebraic structures and terms of the dynamical system. The spectrum of particle velocities has been found for the net \n<span></span><math>\n <semantics>\n <mrow>\n <mn>2</mn>\n <mo>×</mo>\n <mn>2</mn>\n </mrow>\n <annotation>$$ 2\\times 2 $$</annotation>\n </semantics></math>. This approach allows us to hope that the spectrum of dynamical system can be studied for an arbitrary dimension of the net.</p>","PeriodicalId":49865,"journal":{"name":"Mathematical Methods in the Applied Sciences","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Loading conditions for self-organization in the BML model with stochastic direction choice\",\"authors\":\"Marina V. Yashina,&nbsp;Alexander G. Tatashev\",\"doi\":\"10.1002/mma.10276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A dynamical system is considered such that, in this system, particles move on a toroidal lattice of the dimension \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>×</mo>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {N}_1\\\\times {N}_2 $$</annotation>\\n </semantics></math> according to a version of the rule of particle movement in Biham–Middleton–Levine traffic model. We introduce a stochastic case with direction choice for particles. Particles of the first type move along rows, and the particles of the second type move along columns. The goal is to find conditions of self-organization system for any lattice dimension. We have proved that the BML model as a dynamical system is a special case of Buslaev nets. This equivalence allows us to use of Buslaev net analysis techniques to investigate the BML model. In Buslaev nets conception, the self-organization property of the system corresponds to the existence of velocity single point spectrum equal to 1. In the paper, we consider the model version when one notable aspect is that a particle may change its type. Exactly, we assume a constant probability \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation>$$ q $$</annotation>\\n </semantics></math> that a particle changes type at each step. In the case where \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ q&amp;amp;amp;#x0003D;0 $$</annotation>\\n </semantics></math>, the system corresponds to the classical version of the BML model. We define a state of the system where all particles continue to move indefinitely, in both the present and the future, as a state of free movement. A sufficient condition for the system to result in a state of free movement from any initial state (condition for self-organization) has been found. This condition is that the number of particles be not greater than half the greatest common divisor of the numbers \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mspace></mspace>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <mo>…</mo>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {N}_1,{N}_2,\\\\dots, {N}_n $$</annotation>\\n </semantics></math>. It has been proved that, if \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>=</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$$ n&amp;amp;amp;#x0003D;2 $$</annotation>\\n </semantics></math>, and whether \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>0</mn>\\n <mo>&lt;</mo>\\n <mi>q</mi>\\n <mo>&lt;</mo>\\n <mn>1</mn>\\n </mrow>\\n <annotation>$$ 0&amp;amp;lt;q&amp;amp;lt;1 $$</annotation>\\n </semantics></math> or \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$$ q&amp;amp;amp;#x0003D;0 $$</annotation>\\n </semantics></math> and there are both at least one particle of the first type and at least particle of the second type, then a necessary condition for a state of free movement to exist is the greatest common divisor of \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {N}_1 $$</annotation>\\n </semantics></math> and \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>N</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {N}_2 $$</annotation>\\n </semantics></math> be not less than 3. The theorems are formulated in terms of the algebraic structures and terms of the dynamical system. The spectrum of particle velocities has been found for the net \\n<span></span><math>\\n <semantics>\\n <mrow>\\n <mn>2</mn>\\n <mo>×</mo>\\n <mn>2</mn>\\n </mrow>\\n <annotation>$$ 2\\\\times 2 $$</annotation>\\n </semantics></math>. This approach allows us to hope that the spectrum of dynamical system can be studied for an arbitrary dimension of the net.</p>\",\"PeriodicalId\":49865,\"journal\":{\"name\":\"Mathematical Methods in the Applied Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Methods in the Applied Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/mma.10276\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Methods in the Applied Sciences","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mma.10276","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了这样一个动力学系统:在这个系统中,粒子按照比哈姆-米德莱顿-莱文交通模型中粒子运动规则的一个版本在一个维数的环形网格上运动。我们引入了一种随机情况,粒子可以选择方向。第一类粒子沿行移动,第二类粒子沿列移动。我们的目标是找到任意网格维度下自组织系统的条件。我们已经证明,作为动力系统的 BML 模型是布斯拉耶夫网的特例。这种等价性使我们能够使用布斯拉耶夫网分析技术来研究 BML 模型。在布斯拉耶夫网的概念中,系统的自组织特性对应于速度单点谱等于 1 的存在。在本文中,我们考虑的模型版本有一个值得注意的方面,即粒子可能改变其类型。确切地说,我们假设粒子在每一步改变类型的概率是恒定的。在这种情况下,系统对应于经典版本的 BML 模型。我们把所有粒子在现在和未来都无限期地运动的系统状态定义为自由运动状态。我们已经找到了系统从任何初始状态进入自由运动状态的充分条件(自组织条件)。这个条件就是粒子的数量不大于数 ......的最大公约数的一半。这些定理是用动力学系统的代数结构和术语来表述的。粒子速度频谱已被发现为净......。通过这种方法,我们希望可以研究任意维数的网的动力系统谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Loading conditions for self-organization in the BML model with stochastic direction choice

A dynamical system is considered such that, in this system, particles move on a toroidal lattice of the dimension N 1 × N 2 $$ {N}_1\times {N}_2 $$ according to a version of the rule of particle movement in Biham–Middleton–Levine traffic model. We introduce a stochastic case with direction choice for particles. Particles of the first type move along rows, and the particles of the second type move along columns. The goal is to find conditions of self-organization system for any lattice dimension. We have proved that the BML model as a dynamical system is a special case of Buslaev nets. This equivalence allows us to use of Buslaev net analysis techniques to investigate the BML model. In Buslaev nets conception, the self-organization property of the system corresponds to the existence of velocity single point spectrum equal to 1. In the paper, we consider the model version when one notable aspect is that a particle may change its type. Exactly, we assume a constant probability q $$ q $$ that a particle changes type at each step. In the case where q = 0 $$ q&amp;amp;#x0003D;0 $$ , the system corresponds to the classical version of the BML model. We define a state of the system where all particles continue to move indefinitely, in both the present and the future, as a state of free movement. A sufficient condition for the system to result in a state of free movement from any initial state (condition for self-organization) has been found. This condition is that the number of particles be not greater than half the greatest common divisor of the numbers N 1 , N 2 , , N n $$ {N}_1,{N}_2,\dots, {N}_n $$ . It has been proved that, if n = 2 $$ n&amp;amp;#x0003D;2 $$ , and whether 0 < q < 1 $$ 0&amp;lt;q&amp;lt;1 $$ or q = 0 $$ q&amp;amp;#x0003D;0 $$ and there are both at least one particle of the first type and at least particle of the second type, then a necessary condition for a state of free movement to exist is the greatest common divisor of N 1 $$ {N}_1 $$ and N 2 $$ {N}_2 $$ be not less than 3. The theorems are formulated in terms of the algebraic structures and terms of the dynamical system. The spectrum of particle velocities has been found for the net 2 × 2 $$ 2\times 2 $$ . This approach allows us to hope that the spectrum of dynamical system can be studied for an arbitrary dimension of the net.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.90
自引率
6.90%
发文量
798
审稿时长
6 months
期刊介绍: Mathematical Methods in the Applied Sciences publishes papers dealing with new mathematical methods for the consideration of linear and non-linear, direct and inverse problems for physical relevant processes over time- and space- varying media under certain initial, boundary, transition conditions etc. Papers dealing with biomathematical content, population dynamics and network problems are most welcome. Mathematical Methods in the Applied Sciences is an interdisciplinary journal: therefore, all manuscripts must be written to be accessible to a broad scientific but mathematically advanced audience. All papers must contain carefully written introduction and conclusion sections, which should include a clear exposition of the underlying scientific problem, a summary of the mathematical results and the tools used in deriving the results. Furthermore, the scientific importance of the manuscript and its conclusions should be made clear. Papers dealing with numerical processes or which contain only the application of well established methods will not be accepted. Because of the broad scope of the journal, authors should minimize the use of technical jargon from their subfield in order to increase the accessibility of their paper and appeal to a wider readership. If technical terms are necessary, authors should define them clearly so that the main ideas are understandable also to readers not working in the same subfield.
期刊最新文献
Issue Information Issue Information Loading conditions for self-organization in the BML model with stochastic direction choice Numerical solutions and simulations of the fractional COVID-19 model via Pell–Lucas collocation algorithm Asymptotic analysis of the stress concentration between two adjacent stiff inclusions in all dimensions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1