{"title":"注资后股息的最优梯度调整","authors":"Wenyuan Wang, Ran Xu, Kaixin Yan","doi":"10.1287/moor.2023.0102","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the optimal dividend problem with capital injection and ratcheting constraint with nondecreasing dividend payout rate. Capital injections are introduced in order to eliminate the possibility of bankruptcy. Under the Cramér–Lundberg risk model, the problem is formulated as a two-dimensional stochastic control problem. By applying the viscosity theory, we show that the value function is the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation. In order to obtain analytical results, we further study the problem with finite ratcheting constraint, where the dividend rate takes only a finite number of available values. We show that the value function under general ratcheting can be approximated arbitrarily closely by the one with finite ratcheting. Finally, we derive the expressions of value function when the threshold-type finite ratcheting dividend strategy with capital injection is applied, and we show the optimality of such a strategy under certain conditions of concavity. Numerical examples under various scenarios are provided at the end.Funding W. Wang was supported by the National Natural Science Foundation of China [Grants 12171405, 12271066, and 11661074] and the Fundamental Research Funds for the Central Universities of China [Grant 20720220044]. R. Xu was supported by the National Natural Science Foundation of China [Grants 12201506 and 12371468], the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant 21KJB110024], and Xi’an Jiaotong-Liverpool University Research Development Funding [Grant RDF-20-01-02].","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Ratcheting of Dividends with Capital Injection\",\"authors\":\"Wenyuan Wang, Ran Xu, Kaixin Yan\",\"doi\":\"10.1287/moor.2023.0102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the optimal dividend problem with capital injection and ratcheting constraint with nondecreasing dividend payout rate. Capital injections are introduced in order to eliminate the possibility of bankruptcy. Under the Cramér–Lundberg risk model, the problem is formulated as a two-dimensional stochastic control problem. By applying the viscosity theory, we show that the value function is the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation. In order to obtain analytical results, we further study the problem with finite ratcheting constraint, where the dividend rate takes only a finite number of available values. We show that the value function under general ratcheting can be approximated arbitrarily closely by the one with finite ratcheting. Finally, we derive the expressions of value function when the threshold-type finite ratcheting dividend strategy with capital injection is applied, and we show the optimality of such a strategy under certain conditions of concavity. Numerical examples under various scenarios are provided at the end.Funding W. Wang was supported by the National Natural Science Foundation of China [Grants 12171405, 12271066, and 11661074] and the Fundamental Research Funds for the Central Universities of China [Grant 20720220044]. R. Xu was supported by the National Natural Science Foundation of China [Grants 12201506 and 12371468], the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant 21KJB110024], and Xi’an Jiaotong-Liverpool University Research Development Funding [Grant RDF-20-01-02].\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1287/moor.2023.0102\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1287/moor.2023.0102","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optimal Ratcheting of Dividends with Capital Injection
In this paper, we investigate the optimal dividend problem with capital injection and ratcheting constraint with nondecreasing dividend payout rate. Capital injections are introduced in order to eliminate the possibility of bankruptcy. Under the Cramér–Lundberg risk model, the problem is formulated as a two-dimensional stochastic control problem. By applying the viscosity theory, we show that the value function is the unique viscosity solution to the associated Hamilton–Jacobi–Bellman equation. In order to obtain analytical results, we further study the problem with finite ratcheting constraint, where the dividend rate takes only a finite number of available values. We show that the value function under general ratcheting can be approximated arbitrarily closely by the one with finite ratcheting. Finally, we derive the expressions of value function when the threshold-type finite ratcheting dividend strategy with capital injection is applied, and we show the optimality of such a strategy under certain conditions of concavity. Numerical examples under various scenarios are provided at the end.Funding W. Wang was supported by the National Natural Science Foundation of China [Grants 12171405, 12271066, and 11661074] and the Fundamental Research Funds for the Central Universities of China [Grant 20720220044]. R. Xu was supported by the National Natural Science Foundation of China [Grants 12201506 and 12371468], the Natural Science Foundation of the Jiangsu Higher Education Institutions of China [Grant 21KJB110024], and Xi’an Jiaotong-Liverpool University Research Development Funding [Grant RDF-20-01-02].
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.