Zuyu Xu, Kang Shen, Pengnian Cai, Tao Yang, Yuanming Hu, Shixian Chen, Yunlai Zhu, Zuheng Wu, Yuehua Dai, Jun Wang, Fei Yang
{"title":"并行比例融合尖峰量子神经网络优化图像分类","authors":"Zuyu Xu, Kang Shen, Pengnian Cai, Tao Yang, Yuanming Hu, Shixian Chen, Yunlai Zhu, Zuheng Wu, Yuehua Dai, Jun Wang, Fei Yang","doi":"10.1007/s10489-024-05786-3","DOIUrl":null,"url":null,"abstract":"<div><p>The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention because of the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to another, often imposes limitations on the trainability and expressivity of the network. In this study, we introduce a novel architecture termed parallel proportional fusion of spiking and quantum neural networks (PPF-SQNN). The dataset information is simultaneously fed into both the spiking neural network and the variational quantum circuits, with the outputs amalgamated in proportion to their individual contributions. We systematically assess the impact of diverse PPF-SQNN parameters on network performance for image classification, aiming to identify the optimal configuration. On three datasets for image classification tasks, the final classification accuracy reached 98.2%, 99.198%, and 97.921%, respectively, with loss values all below 0.2, outperforming the compared serial networks. In noise testing, it also demonstrates good classification performance even under noise intensities of 0.9 Gaussian and uniform noise. This study introduces a novel and effective amalgamation approach for HQCNN, laying the groundwork for the advancement and application of quantum advantages in artificial intelligence computations.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 22","pages":"11876 - 11891"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parallel proportional fusion of a spiking quantum neural network for optimizing image classification\",\"authors\":\"Zuyu Xu, Kang Shen, Pengnian Cai, Tao Yang, Yuanming Hu, Shixian Chen, Yunlai Zhu, Zuheng Wu, Yuehua Dai, Jun Wang, Fei Yang\",\"doi\":\"10.1007/s10489-024-05786-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention because of the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to another, often imposes limitations on the trainability and expressivity of the network. In this study, we introduce a novel architecture termed parallel proportional fusion of spiking and quantum neural networks (PPF-SQNN). The dataset information is simultaneously fed into both the spiking neural network and the variational quantum circuits, with the outputs amalgamated in proportion to their individual contributions. We systematically assess the impact of diverse PPF-SQNN parameters on network performance for image classification, aiming to identify the optimal configuration. On three datasets for image classification tasks, the final classification accuracy reached 98.2%, 99.198%, and 97.921%, respectively, with loss values all below 0.2, outperforming the compared serial networks. In noise testing, it also demonstrates good classification performance even under noise intensities of 0.9 Gaussian and uniform noise. This study introduces a novel and effective amalgamation approach for HQCNN, laying the groundwork for the advancement and application of quantum advantages in artificial intelligence computations.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"54 22\",\"pages\":\"11876 - 11891\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05786-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05786-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Parallel proportional fusion of a spiking quantum neural network for optimizing image classification
The recent emergence of the hybrid quantum-classical neural network (HQCNN) architecture has garnered considerable attention because of the potential advantages associated with integrating quantum principles to enhance various facets of machine learning algorithms and computations. However, the current investigated serial structure of HQCNN, wherein information sequentially passes from one network to another, often imposes limitations on the trainability and expressivity of the network. In this study, we introduce a novel architecture termed parallel proportional fusion of spiking and quantum neural networks (PPF-SQNN). The dataset information is simultaneously fed into both the spiking neural network and the variational quantum circuits, with the outputs amalgamated in proportion to their individual contributions. We systematically assess the impact of diverse PPF-SQNN parameters on network performance for image classification, aiming to identify the optimal configuration. On three datasets for image classification tasks, the final classification accuracy reached 98.2%, 99.198%, and 97.921%, respectively, with loss values all below 0.2, outperforming the compared serial networks. In noise testing, it also demonstrates good classification performance even under noise intensities of 0.9 Gaussian and uniform noise. This study introduces a novel and effective amalgamation approach for HQCNN, laying the groundwork for the advancement and application of quantum advantages in artificial intelligence computations.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.