不同方法制备的 ZrO2(MexOy)细粉的烧结性能

IF 0.4 4区 物理与天体物理 Q4 PHYSICS, MULTIDISCIPLINARY Russian Physics Journal Pub Date : 2024-08-23 DOI:10.1007/s11182-024-03219-9
X. Yang, A. G. Burlachenko, S. P. Buyakova
{"title":"不同方法制备的 ZrO2(MexOy)细粉的烧结性能","authors":"X. Yang,&nbsp;A. G. Burlachenko,&nbsp;S. P. Buyakova","doi":"10.1007/s11182-024-03219-9","DOIUrl":null,"url":null,"abstract":"<p>This work explores compaction of fine ZrO<sub>2</sub> powders doped with Y<sub>2</sub>O<sub>3</sub> and MgO. ZrO<sub>2</sub>(Me<sub><i>x</i></sub>O<sub><i>y</i></sub>) powders are obtained by plasma chemical synthesis and chemical precipitation from salt solutions. Powder compaction is studied during the nonisothermal sintering process. It is shown that the ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) powder synthesized by chemical precipitation demonstrates the lowest degree of compaction during sintering. With the same synthesis method and similar size distribution of ZrO<sub>2</sub>(Me<sub><i>x</i></sub>O<sub><i>y</i></sub>) powders, the difference in the compaction kinetics is determined by the different number of oxygen vacancies. The higher number of oxygen vacancies in the ZrO<sub>2</sub>(MgO) powder obtained by plasma chemical synthesis, provides the highest compaction rate compared to the ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) powder. According to mercury porosimetry, ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) powders of the same composition obtained by plasma chemical synthesis and chemical precipitation, have very different porosity. The highest compaction rate for all compacts is observed at the heating stage. After sintering, ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) ceramic samples show similar values of compaction rate. Research findings may be useful to specialists involved in the development and synthesis of fine ceramic powders.</p>","PeriodicalId":770,"journal":{"name":"Russian Physics Journal","volume":"67 8","pages":"1083 - 1089"},"PeriodicalIF":0.4000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sintering Properties of ZrO2(MexOy) Fine Powders Produced by Different Methods\",\"authors\":\"X. Yang,&nbsp;A. G. Burlachenko,&nbsp;S. P. Buyakova\",\"doi\":\"10.1007/s11182-024-03219-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work explores compaction of fine ZrO<sub>2</sub> powders doped with Y<sub>2</sub>O<sub>3</sub> and MgO. ZrO<sub>2</sub>(Me<sub><i>x</i></sub>O<sub><i>y</i></sub>) powders are obtained by plasma chemical synthesis and chemical precipitation from salt solutions. Powder compaction is studied during the nonisothermal sintering process. It is shown that the ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) powder synthesized by chemical precipitation demonstrates the lowest degree of compaction during sintering. With the same synthesis method and similar size distribution of ZrO<sub>2</sub>(Me<sub><i>x</i></sub>O<sub><i>y</i></sub>) powders, the difference in the compaction kinetics is determined by the different number of oxygen vacancies. The higher number of oxygen vacancies in the ZrO<sub>2</sub>(MgO) powder obtained by plasma chemical synthesis, provides the highest compaction rate compared to the ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) powder. According to mercury porosimetry, ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) powders of the same composition obtained by plasma chemical synthesis and chemical precipitation, have very different porosity. The highest compaction rate for all compacts is observed at the heating stage. After sintering, ZrO<sub>2</sub>(Y<sub>2</sub>O<sub>3</sub>) ceramic samples show similar values of compaction rate. Research findings may be useful to specialists involved in the development and synthesis of fine ceramic powders.</p>\",\"PeriodicalId\":770,\"journal\":{\"name\":\"Russian Physics Journal\",\"volume\":\"67 8\",\"pages\":\"1083 - 1089\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Russian Physics Journal\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11182-024-03219-9\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Russian Physics Journal","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11182-024-03219-9","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项研究探讨了掺杂 Y2O3 和氧化镁的氧化锆粉末的压实问题。ZrO2(MexOy) 粉末是通过等离子化学合成和盐溶液化学沉淀获得的。在非等温烧结过程中对粉末压实进行了研究。结果表明,通过化学沉淀合成的 ZrO2(Y2O3)粉末在烧结过程中的压实度最低。在合成方法相同、ZrO2(MexOy)粉末粒度分布相似的情况下,氧空位数量的不同决定了压实动力学的差异。与 ZrO2(Y2O3)粉末相比,通过等离子化学合成获得的 ZrO2(MgO)粉末中氧空位的数量较多,因此压实速率最高。根据汞孔测定法,通过等离子体化学合成和化学沉淀获得的相同成分的 ZrO2(Y2O3)粉末的孔隙率差别很大。所有压实物的最高压实率都出现在加热阶段。烧结后,ZrO2(Y2O3) 陶瓷样品显示出相似的压实率值。研究结果可能对开发和合成精细陶瓷粉末的专家有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sintering Properties of ZrO2(MexOy) Fine Powders Produced by Different Methods

This work explores compaction of fine ZrO2 powders doped with Y2O3 and MgO. ZrO2(MexOy) powders are obtained by plasma chemical synthesis and chemical precipitation from salt solutions. Powder compaction is studied during the nonisothermal sintering process. It is shown that the ZrO2(Y2O3) powder synthesized by chemical precipitation demonstrates the lowest degree of compaction during sintering. With the same synthesis method and similar size distribution of ZrO2(MexOy) powders, the difference in the compaction kinetics is determined by the different number of oxygen vacancies. The higher number of oxygen vacancies in the ZrO2(MgO) powder obtained by plasma chemical synthesis, provides the highest compaction rate compared to the ZrO2(Y2O3) powder. According to mercury porosimetry, ZrO2(Y2O3) powders of the same composition obtained by plasma chemical synthesis and chemical precipitation, have very different porosity. The highest compaction rate for all compacts is observed at the heating stage. After sintering, ZrO2(Y2O3) ceramic samples show similar values of compaction rate. Research findings may be useful to specialists involved in the development and synthesis of fine ceramic powders.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Russian Physics Journal
Russian Physics Journal PHYSICS, MULTIDISCIPLINARY-
CiteScore
1.00
自引率
50.00%
发文量
208
审稿时长
3-6 weeks
期刊介绍: Russian Physics Journal covers the broad spectrum of specialized research in applied physics, with emphasis on work with practical applications in solid-state physics, optics, and magnetism. Particularly interesting results are reported in connection with: electroluminescence and crystal phospors; semiconductors; phase transformations in solids; superconductivity; properties of thin films; and magnetomechanical phenomena.
期刊最新文献
Incidence Angle Effect on Oxide Charge Kinetics Crack Propagation Under Residual Stress Field Induced by Laser Shock Peening Structure and Stability of High Entropy CrMnFeCoNiCu Alloy Features and Some Results of the SPH Method Application for Assessing the Factors of Explosion Action Studies on Up-Conversion Photoluminescence Exhibited by Er3+-Doped Akermanite (Di-Calcium Magnesium Silicate) Phosphors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1