{"title":"群体感受野大小在高阶视觉功能障碍中的作用","authors":"Deena Elul, Netta Levin","doi":"10.1007/s11910-024-01375-6","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose of Review</h3><p>Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions.</p><h3 data-test=\"abstract-sub-heading\">Recent Findings</h3><p>Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer’s disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity.</p><h3 data-test=\"abstract-sub-heading\">Summary</h3><p>Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.</p>","PeriodicalId":10831,"journal":{"name":"Current Neurology and Neuroscience Reports","volume":"4 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction\",\"authors\":\"Deena Elul, Netta Levin\",\"doi\":\"10.1007/s11910-024-01375-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose of Review</h3><p>Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions.</p><h3 data-test=\\\"abstract-sub-heading\\\">Recent Findings</h3><p>Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer’s disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity.</p><h3 data-test=\\\"abstract-sub-heading\\\">Summary</h3><p>Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.</p>\",\"PeriodicalId\":10831,\"journal\":{\"name\":\"Current Neurology and Neuroscience Reports\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Neurology and Neuroscience Reports\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s11910-024-01375-6\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Neurology and Neuroscience Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s11910-024-01375-6","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
The Role of Population Receptive Field Sizes in Higher-Order Visual Dysfunction
Purpose of Review
Population receptive field (pRF) modeling is an fMRI technique used to retinotopically map visual cortex, with pRF size characterizing the degree of spatial integration. In clinical populations, most pRF mapping research has focused on damage to visual system inputs. Herein, we highlight recent work using pRF modeling to study high-level visual dysfunctions.
Recent Findings
Larger pRF sizes, indicating coarser spatial processing, were observed in homonymous visual field deficits, aging, and autism spectrum disorder. Smaller pRF sizes, indicating finer processing, were observed in Alzheimer’s disease and schizophrenia. In posterior cortical atrophy, a unique pattern was found in which pRF size changes depended on eccentricity.
Summary
Changes to pRF properties were observed in clinical populations, even in high-order impairments, explaining visual behavior. These pRF changes likely stem from altered interactions between brain regions. Furthermore, some studies suggested that pRF sizes change as part of cortical reorganization, and they can point towards future prognosis.
期刊介绍:
Current Neurology and Neuroscience Reports provides in-depth review articles contributed by international experts on the most significant developments in the field. By presenting clear, insightful, balanced reviews that emphasize recently published papers of major importance, the journal elucidates current and emerging approaches to the diagnosis, treatment, management, and prevention of neurological disease and disorders.
Presents the views of experts on current advances in neurology and neuroscience
Gathers and synthesizes important recent papers on the topic
Includes reviews of recently published clinical trials, valuable web sites, and commentaries from well-known figures in the field.