物理学模型系统相位和结构的机器学习

Djenabou Bayo, Burak Çivitcioğlu, Joseph J Webb, Andreas Honecker, Rudolf A. Römer
{"title":"物理学模型系统相位和结构的机器学习","authors":"Djenabou Bayo, Burak Çivitcioğlu, Joseph J Webb, Andreas Honecker, Rudolf A. Römer","doi":"arxiv-2409.03023","DOIUrl":null,"url":null,"abstract":"The detection of phase transitions is a fundamental challenge in condensed\nmatter physics, traditionally addressed through analytical methods and direct\nnumerical simulations. In recent years, machine learning techniques have\nemerged as powerful tools to complement these standard approaches, offering\nvaluable insights into phase and structure determination. Additionally, they\nhave been shown to enhance the application of traditional methods. In this\nwork, we review recent advancements in this area, with a focus on our\ncontributions to phase and structure determination using supervised and\nunsupervised learning methods in several systems: (a) 2D site percolation, (b)\nthe 3D Anderson model of localization, (c) the 2D $J_1$-$J_2$ Ising model, and\n(d) the prediction of large-angle convergent beam electron diffraction\npatterns.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning of phases and structures for model systems in physics\",\"authors\":\"Djenabou Bayo, Burak Çivitcioğlu, Joseph J Webb, Andreas Honecker, Rudolf A. Römer\",\"doi\":\"arxiv-2409.03023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The detection of phase transitions is a fundamental challenge in condensed\\nmatter physics, traditionally addressed through analytical methods and direct\\nnumerical simulations. In recent years, machine learning techniques have\\nemerged as powerful tools to complement these standard approaches, offering\\nvaluable insights into phase and structure determination. Additionally, they\\nhave been shown to enhance the application of traditional methods. In this\\nwork, we review recent advancements in this area, with a focus on our\\ncontributions to phase and structure determination using supervised and\\nunsupervised learning methods in several systems: (a) 2D site percolation, (b)\\nthe 3D Anderson model of localization, (c) the 2D $J_1$-$J_2$ Ising model, and\\n(d) the prediction of large-angle convergent beam electron diffraction\\npatterns.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

相变检测是凝聚态物理学的一项基本挑战,传统上通过分析方法和直接数值模拟来解决。近年来,机器学习技术已成为这些标准方法的有力补充,为相变和结构确定提供了宝贵的见解。此外,这些技术还被证明可以提高传统方法的应用。在这篇论文中,我们回顾了这一领域的最新进展,重点介绍了我们在以下几个系统中使用监督和非监督学习方法对相位和结构确定所做的贡献:(a) 二维位点渗流,(b) 三维安德森定位模型,(c) 二维 $J_1$-$J_2$ 伊辛模型,以及(d) 大角度会聚束电子衍射图案的预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning of phases and structures for model systems in physics
The detection of phase transitions is a fundamental challenge in condensed matter physics, traditionally addressed through analytical methods and direct numerical simulations. In recent years, machine learning techniques have emerged as powerful tools to complement these standard approaches, offering valuable insights into phase and structure determination. Additionally, they have been shown to enhance the application of traditional methods. In this work, we review recent advancements in this area, with a focus on our contributions to phase and structure determination using supervised and unsupervised learning methods in several systems: (a) 2D site percolation, (b) the 3D Anderson model of localization, (c) the 2D $J_1$-$J_2$ Ising model, and (d) the prediction of large-angle convergent beam electron diffraction patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1