基于图谱的特征工程预测凝聚态物质的动态特性

An Wang, Gabriele C. Sosso
{"title":"基于图谱的特征工程预测凝聚态物质的动态特性","authors":"An Wang, Gabriele C. Sosso","doi":"arxiv-2408.06016","DOIUrl":null,"url":null,"abstract":"We present a graph theory-based method to characterise flow defects and\nstructural shifts in condensed matter. We explore the connection between\ndynamical properties, particularly the recently introduced concept of\n''softness'', and graph-based features such as centrality and clustering\ncoefficients. These topological features outperform conventional features based\non Euclidean metric in predicting particle mobility and allow to correctly\nidentify phase transitions as well. These results provide a new set of\ncomputational tools to investigate the dynamical properties of condensed matter\nsystems.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graph-Based Feature Engineering to Predict the Dynamical Properties of Condensed Matter\",\"authors\":\"An Wang, Gabriele C. Sosso\",\"doi\":\"arxiv-2408.06016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a graph theory-based method to characterise flow defects and\\nstructural shifts in condensed matter. We explore the connection between\\ndynamical properties, particularly the recently introduced concept of\\n''softness'', and graph-based features such as centrality and clustering\\ncoefficients. These topological features outperform conventional features based\\non Euclidean metric in predicting particle mobility and allow to correctly\\nidentify phase transitions as well. These results provide a new set of\\ncomputational tools to investigate the dynamical properties of condensed matter\\nsystems.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于图论的方法来描述凝聚态物质中的流动缺陷和结构转变。我们探索了动力学特性(尤其是最近引入的 "软度 "概念)与基于图的特征(如中心性和聚类系数)之间的联系。这些拓扑特征在预测粒子流动性方面优于基于欧几里得度量的传统特征,而且还能正确识别相变。这些结果为研究凝聚态物质系统的动力学特性提供了一套新的计算工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graph-Based Feature Engineering to Predict the Dynamical Properties of Condensed Matter
We present a graph theory-based method to characterise flow defects and structural shifts in condensed matter. We explore the connection between dynamical properties, particularly the recently introduced concept of ''softness'', and graph-based features such as centrality and clustering coefficients. These topological features outperform conventional features based on Euclidean metric in predicting particle mobility and allow to correctly identify phase transitions as well. These results provide a new set of computational tools to investigate the dynamical properties of condensed matter systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1