来自第一原理模拟的玻璃动力学

Florian Pabst, Stefano Baroni
{"title":"来自第一原理模拟的玻璃动力学","authors":"Florian Pabst, Stefano Baroni","doi":"arxiv-2408.05528","DOIUrl":null,"url":null,"abstract":"The microscopic understanding of the dramatic increase in viscosity of\nliquids when cooled towards the glass transition is a major unresolved issue in\ncondensed matter physics. Here, we use machine learning methods to accelerate\nmolecular dynamics simulations with first-principles accuracy for the\nglass-former toluene. We show that the increase in viscosity is intimately\nlinked to the increasing number of dynamically correlated molecules $N^*$.\nWhile certain hallmark features of glassy dynamics, like physical aging, are\nlinked to $N^*$ as well, others, like relaxation stretching, are not.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Glassy Dynamics from First-Principles Simulations\",\"authors\":\"Florian Pabst, Stefano Baroni\",\"doi\":\"arxiv-2408.05528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The microscopic understanding of the dramatic increase in viscosity of\\nliquids when cooled towards the glass transition is a major unresolved issue in\\ncondensed matter physics. Here, we use machine learning methods to accelerate\\nmolecular dynamics simulations with first-principles accuracy for the\\nglass-former toluene. We show that the increase in viscosity is intimately\\nlinked to the increasing number of dynamically correlated molecules $N^*$.\\nWhile certain hallmark features of glassy dynamics, like physical aging, are\\nlinked to $N^*$ as well, others, like relaxation stretching, are not.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.05528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.05528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从微观上理解液体在冷却至玻璃化转变时粘度急剧增加的现象,是凝结物质物理学的一个重大未决问题。在这里,我们利用机器学习方法,以第一原理的精度加速了对玻璃化物甲苯的分子动力学模拟。我们的研究表明,粘度的增加与动态相关分子数量 $N^*$ 的增加密切相关。虽然玻璃态动力学的某些标志性特征(如物理老化)也与 $N^*$ 相关,但其他特征(如弛豫伸展)则与 $N^*$ 无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Glassy Dynamics from First-Principles Simulations
The microscopic understanding of the dramatic increase in viscosity of liquids when cooled towards the glass transition is a major unresolved issue in condensed matter physics. Here, we use machine learning methods to accelerate molecular dynamics simulations with first-principles accuracy for the glass-former toluene. We show that the increase in viscosity is intimately linked to the increasing number of dynamically correlated molecules $N^*$. While certain hallmark features of glassy dynamics, like physical aging, are linked to $N^*$ as well, others, like relaxation stretching, are not.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast Analysis of the OpenAI O1-Preview Model in Solving Random K-SAT Problem: Does the LLM Solve the Problem Itself or Call an External SAT Solver? Trade-off relations between quantum coherence and measure of many-body localization Soft modes in vector spin glass models on sparse random graphs Boolean mean field spin glass model: rigorous results Generalized hetero-associative neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1