气体的润滑性

IF 2.9 3区 工程技术 Q2 ENGINEERING, CHEMICAL Tribology Letters Pub Date : 2024-08-28 DOI:10.1007/s11249-024-01911-y
Jie Zhang, Janet S. S. Wong, Hugh A. Spikes
{"title":"气体的润滑性","authors":"Jie Zhang,&nbsp;Janet S. S. Wong,&nbsp;Hugh A. Spikes","doi":"10.1007/s11249-024-01911-y","DOIUrl":null,"url":null,"abstract":"<div><p>A sealed reciprocating tribometer has been used to study the influence of different gaseous environments on the friction and wear properties of AISI52100 bearing steel at atmospheric pressure and 25 °C. Helium, argon, hydrogen, carbon dioxide and nitrogen all give high friction and wear, suggestive of very little, if any tribofilm formation under the conditions studied. Dry air and oxygen also give high friction, slightly lower than the inert gases, but produce extremely high wear, much higher than the inert gases. This is characteristic of the phenomenon of “oxidational wear”. The two gases ammonia and carbon monoxide give relatively low friction and wear, and XPS analysis indicates that this is due to the formation of adsorbed ammonia/nitride and carbonate films respectively. For the hydrocarbon gases studied, two factors appear to control friction and wear, degree of unsaturation and molecular weight. For the saturated hydrocarbons, methane and ethane give high friction and wear but propane and butane give low friction after a period of rubbing that decreases with molecular weight. The unsaturated hydrocarbons all give an immediate reduction in friction with correspondingly low wear. Raman analysis shows that all the hydrocarbons that reduce friction and wear form a carbonaceous tribofilm on the rubbed surfaces.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":806,"journal":{"name":"Tribology Letters","volume":"72 4","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11249-024-01911-y.pdf","citationCount":"0","resultStr":"{\"title\":\"The Lubricity of Gases\",\"authors\":\"Jie Zhang,&nbsp;Janet S. S. Wong,&nbsp;Hugh A. Spikes\",\"doi\":\"10.1007/s11249-024-01911-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A sealed reciprocating tribometer has been used to study the influence of different gaseous environments on the friction and wear properties of AISI52100 bearing steel at atmospheric pressure and 25 °C. Helium, argon, hydrogen, carbon dioxide and nitrogen all give high friction and wear, suggestive of very little, if any tribofilm formation under the conditions studied. Dry air and oxygen also give high friction, slightly lower than the inert gases, but produce extremely high wear, much higher than the inert gases. This is characteristic of the phenomenon of “oxidational wear”. The two gases ammonia and carbon monoxide give relatively low friction and wear, and XPS analysis indicates that this is due to the formation of adsorbed ammonia/nitride and carbonate films respectively. For the hydrocarbon gases studied, two factors appear to control friction and wear, degree of unsaturation and molecular weight. For the saturated hydrocarbons, methane and ethane give high friction and wear but propane and butane give low friction after a period of rubbing that decreases with molecular weight. The unsaturated hydrocarbons all give an immediate reduction in friction with correspondingly low wear. Raman analysis shows that all the hydrocarbons that reduce friction and wear form a carbonaceous tribofilm on the rubbed surfaces.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":806,\"journal\":{\"name\":\"Tribology Letters\",\"volume\":\"72 4\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11249-024-01911-y.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology Letters\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11249-024-01911-y\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology Letters","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11249-024-01911-y","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

使用密封的往复式摩擦磨损试验机研究了不同气体环境对 AISI52100 轴承钢在大气压力和 25 °C 下的摩擦和磨损特性的影响。氦气、氩气、氢气、二氧化碳和氮气都能产生较高的摩擦和磨损,表明在研究条件下几乎没有三膜形成。干燥空气和氧气的摩擦系数也很高,略低于惰性气体,但产生的磨损极高,远高于惰性气体。这是 "氧化磨损 "现象的特征。氨和一氧化碳这两种气体产生的摩擦和磨损相对较低,XPS 分析表明,这分别是由于形成了吸附氨/氮化物和碳酸盐薄膜。对于所研究的碳氢化合物气体,有两个因素似乎控制着摩擦和磨损,即不饱和程度和分子量。对于饱和碳氢化合物,甲烷和乙烷的摩擦和磨损程度较高,但丙烷和丁烷在摩擦一段时间后的摩擦程度较低,而摩擦程度随分子量的增加而降低。不饱和碳氢化合物都能立即降低摩擦力,相应地降低磨损。拉曼分析表明,所有减少摩擦和磨损的碳氢化合物都会在摩擦表面形成碳质三膜。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Lubricity of Gases

A sealed reciprocating tribometer has been used to study the influence of different gaseous environments on the friction and wear properties of AISI52100 bearing steel at atmospheric pressure and 25 °C. Helium, argon, hydrogen, carbon dioxide and nitrogen all give high friction and wear, suggestive of very little, if any tribofilm formation under the conditions studied. Dry air and oxygen also give high friction, slightly lower than the inert gases, but produce extremely high wear, much higher than the inert gases. This is characteristic of the phenomenon of “oxidational wear”. The two gases ammonia and carbon monoxide give relatively low friction and wear, and XPS analysis indicates that this is due to the formation of adsorbed ammonia/nitride and carbonate films respectively. For the hydrocarbon gases studied, two factors appear to control friction and wear, degree of unsaturation and molecular weight. For the saturated hydrocarbons, methane and ethane give high friction and wear but propane and butane give low friction after a period of rubbing that decreases with molecular weight. The unsaturated hydrocarbons all give an immediate reduction in friction with correspondingly low wear. Raman analysis shows that all the hydrocarbons that reduce friction and wear form a carbonaceous tribofilm on the rubbed surfaces.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Tribology Letters
Tribology Letters 工程技术-工程:化工
CiteScore
5.30
自引率
9.40%
发文量
116
审稿时长
2.5 months
期刊介绍: Tribology Letters is devoted to the development of the science of tribology and its applications, particularly focusing on publishing high-quality papers at the forefront of tribological science and that address the fundamentals of friction, lubrication, wear, or adhesion. The journal facilitates communication and exchange of seminal ideas among thousands of practitioners who are engaged worldwide in the pursuit of tribology-based science and technology.
期刊最新文献
Obtaining Ultra-long Wear Lifetime of Graphene Oxide Films Under High Contact Stress Through Soft and Hard Interbeded Formation Mode Superlubricity of Sputtered MoS2 Film in Dry Air Enabled by Proton Irradiation Temperature Rise in Frictional Sliding Contact of Elastic–Plastic Solids with Fractal Surface Counterion-Driven Mechanochemical Reactions at TC4 Alloy/SiO2 Interfaces: Electrical Double Layer and Dynamic Ionic Radius Machine-Learning-Assisted Identification and Formulation of High-Pressure Lubricant-Piezoviscous-Response Parameters for Minimum Film Thickness Determination in Elastohydrodynamic Circular Contacts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1