氨基乙氧基乙烯基甘氨酸和 1-甲基环丙烯:对美国大西洋中部地区 "蜜柑 "苹果采前落果、果实成熟度、品质和相关基因表达的影响

Plants Pub Date : 2024-09-08 DOI:10.3390/plants13172524
Emily Johnson, Macarena Farcuh
{"title":"氨基乙氧基乙烯基甘氨酸和 1-甲基环丙烯:对美国大西洋中部地区 \"蜜柑 \"苹果采前落果、果实成熟度、品质和相关基因表达的影响","authors":"Emily Johnson, Macarena Farcuh","doi":"10.3390/plants13172524","DOIUrl":null,"url":null,"abstract":"Preharvest fruit drop is one of the main challenges in apple production as it can lead to extensive crop losses in commercially important cultivars including ‘Honeycrisp’. Plant growth regulators, such as aminoethoxyvinylglicine (AVG) and 1-methylcyclopropene (1-MCP), which hinder ethylene biosynthesis and perception, respectively, can control preharvest fruit drop, but an assessment of their effects in ‘Honeycrisp’ fruit grown under US mid-Atlantic conditions is lacking. In this study, we evaluated the effects of AVG (130 mg a.i. L−1) and 1-MCP (150 mg a.i. L−1) on preharvest fruit drop, ethylene production, fruit physicochemical parameters, skin color, and transcript accumulation of ethylene and anthocyanin-related genes in ‘Honeycrisp’ apples throughout on-the-tree ripening. We showed that both AVG and 1-MCP significantly minimized preharvest fruit drop with respect to the control fruit. Additionally, AVG was the most effective in decreasing ethylene production, downregulating ethylene biosynthesis and perception-related gene expression, and delaying fruit maturity. Nevertheless, AVG negatively impacted apple red skin color and exhibited the lowest expression of anthocyanin-biosynthesis-related genes, only allowing apples to reach the minimum required 50% blush at the last ripening stage. Conversely, 1-MCP-treated fruit displayed an intermediate behavior between AVG-treated and control fruit, decreasing ethylene production rates and the associated gene expression as well as delaying fruit maturity when compared to the control fruit. Remarkably, 1-MCP treatment did not sacrifice red skin color development or anthocyanin-biosynthesis-related gene expression, thus exhibiting > 50% blush one week earlier than AVG.","PeriodicalId":20103,"journal":{"name":"Plants","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aminoethoxyvinylglicine and 1-Methylcyclopropene: Effects on Preharvest Drop, Fruit Maturity, Quality, and Associated Gene Expression of ‘Honeycrisp’ Apples in the US Mid-Atlantic\",\"authors\":\"Emily Johnson, Macarena Farcuh\",\"doi\":\"10.3390/plants13172524\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preharvest fruit drop is one of the main challenges in apple production as it can lead to extensive crop losses in commercially important cultivars including ‘Honeycrisp’. Plant growth regulators, such as aminoethoxyvinylglicine (AVG) and 1-methylcyclopropene (1-MCP), which hinder ethylene biosynthesis and perception, respectively, can control preharvest fruit drop, but an assessment of their effects in ‘Honeycrisp’ fruit grown under US mid-Atlantic conditions is lacking. In this study, we evaluated the effects of AVG (130 mg a.i. L−1) and 1-MCP (150 mg a.i. L−1) on preharvest fruit drop, ethylene production, fruit physicochemical parameters, skin color, and transcript accumulation of ethylene and anthocyanin-related genes in ‘Honeycrisp’ apples throughout on-the-tree ripening. We showed that both AVG and 1-MCP significantly minimized preharvest fruit drop with respect to the control fruit. Additionally, AVG was the most effective in decreasing ethylene production, downregulating ethylene biosynthesis and perception-related gene expression, and delaying fruit maturity. Nevertheless, AVG negatively impacted apple red skin color and exhibited the lowest expression of anthocyanin-biosynthesis-related genes, only allowing apples to reach the minimum required 50% blush at the last ripening stage. Conversely, 1-MCP-treated fruit displayed an intermediate behavior between AVG-treated and control fruit, decreasing ethylene production rates and the associated gene expression as well as delaying fruit maturity when compared to the control fruit. Remarkably, 1-MCP treatment did not sacrifice red skin color development or anthocyanin-biosynthesis-related gene expression, thus exhibiting > 50% blush one week earlier than AVG.\",\"PeriodicalId\":20103,\"journal\":{\"name\":\"Plants\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plants\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/plants13172524\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plants","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/plants13172524","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

采收前落果是苹果生产面临的主要挑战之一,因为它会导致包括 "Honeycrisp "在内的重要商业栽培品种的大量减产。植物生长调节剂(如氨基乙氧基乙烯利(AVG)和 1-甲基环丙烯(1-MCP))分别阻碍乙烯的生物合成和感知,可以控制采前落果,但目前还缺乏对它们在美国大西洋中部条件下种植的'Honeycrisp'果实中的效果评估。在这项研究中,我们评估了 AVG(130 毫克活性成分/升-1)和 1-氯丙二醇(150 毫克活性成分/升-1)对'Honeycrisp'苹果在整个树上成熟过程中的采前落果、乙烯产量、果实理化参数、果皮颜色以及乙烯和花青素相关基因转录本积累的影响。我们的研究表明,与对照果实相比,AVG 和 1-MCP 都能显著减少采前落果。此外,AVG 在减少乙烯产生、下调乙烯生物合成和感知相关基因表达以及延迟果实成熟方面最为有效。不过,AVG 对苹果红色果皮的颜色有负面影响,花青素生物合成相关基因的表达量最低,只能让苹果在最后成熟阶段达到最低要求的 50%腮红。相反,经 1-MCP 处理的果实表现出介于 AVG 处理果实和对照果实之间的特性,与对照果实相比,乙烯产生率和相关基因的表达量都有所下降,果实成熟期也有所推迟。值得注意的是,1-MCP 处理并没有牺牲红色果皮颜色的形成或花青素生物合成相关基因的表达,因此比 AVG 处理提前一周呈现出 > 50% 的胭脂红。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aminoethoxyvinylglicine and 1-Methylcyclopropene: Effects on Preharvest Drop, Fruit Maturity, Quality, and Associated Gene Expression of ‘Honeycrisp’ Apples in the US Mid-Atlantic
Preharvest fruit drop is one of the main challenges in apple production as it can lead to extensive crop losses in commercially important cultivars including ‘Honeycrisp’. Plant growth regulators, such as aminoethoxyvinylglicine (AVG) and 1-methylcyclopropene (1-MCP), which hinder ethylene biosynthesis and perception, respectively, can control preharvest fruit drop, but an assessment of their effects in ‘Honeycrisp’ fruit grown under US mid-Atlantic conditions is lacking. In this study, we evaluated the effects of AVG (130 mg a.i. L−1) and 1-MCP (150 mg a.i. L−1) on preharvest fruit drop, ethylene production, fruit physicochemical parameters, skin color, and transcript accumulation of ethylene and anthocyanin-related genes in ‘Honeycrisp’ apples throughout on-the-tree ripening. We showed that both AVG and 1-MCP significantly minimized preharvest fruit drop with respect to the control fruit. Additionally, AVG was the most effective in decreasing ethylene production, downregulating ethylene biosynthesis and perception-related gene expression, and delaying fruit maturity. Nevertheless, AVG negatively impacted apple red skin color and exhibited the lowest expression of anthocyanin-biosynthesis-related genes, only allowing apples to reach the minimum required 50% blush at the last ripening stage. Conversely, 1-MCP-treated fruit displayed an intermediate behavior between AVG-treated and control fruit, decreasing ethylene production rates and the associated gene expression as well as delaying fruit maturity when compared to the control fruit. Remarkably, 1-MCP treatment did not sacrifice red skin color development or anthocyanin-biosynthesis-related gene expression, thus exhibiting > 50% blush one week earlier than AVG.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-Temporal Variations of Volatile Metabolites as an Eco-Physiological Response of a Native Species in the Tropical Forest Development of Cost-Effective SNP Markers for Genetic Variation Analysis and Variety Identification in Cultivated Pears (Pyrus spp.) Biosynthesis of Piceatannol from Resveratrol in Grapevine Can Be Mediated by Cresolase-Dependent Ortho-Hydroxylation Activity of Polyphenol Oxidase Effect of Drought and Rehydration on Physiological Characteristics of Agriophyllum squarrosum (L.) Moq. in Different Habitats Identification and Evaluation of Diploid and Tetraploid Passiflora edulis Sims
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1