通过能量转移和陷阱共享实现多色余辉的 LiGa5O8:Tb3+/Sm3+ 共掺杂五倍子硅酸盐玻璃用于光学防伪

IF 5.7 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of Materials Chemistry C Pub Date : 2024-09-05 DOI:10.1039/D4TC03171G
Jing Li, Dan Zhang, Yixi Wu, Lulu Li, Xinlian Zhang, Shiqing Xu and Junjie Zhang
{"title":"通过能量转移和陷阱共享实现多色余辉的 LiGa5O8:Tb3+/Sm3+ 共掺杂五倍子硅酸盐玻璃用于光学防伪","authors":"Jing Li, Dan Zhang, Yixi Wu, Lulu Li, Xinlian Zhang, Shiqing Xu and Junjie Zhang","doi":"10.1039/D4TC03171G","DOIUrl":null,"url":null,"abstract":"<p >Long afterglow materials with excellent optical properties and stable performance are urgently required, particularly in the fields of anti-counterfeiting and encryption. Nowadays, glass ceramics are promising candidates for afterglow, due to their good ability to capture photons and robust chemical stability. Here, a series of Tb<small><sup>3+</sup></small>/Sm<small><sup>3+</sup></small> co-doped gallosilicate glass precursors were prepared <em>via</em> a high-temperature melting method, forming transparent glass ceramics containing LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small> nanocrystals by heat-treatment. The afterglow phenomenon was observed in these samples after turning off UV irradiation, and subsequent investigation showed that, by controlling the concentration of two rare earth ions Tb<small><sup>3+</sup></small> and Sm<small><sup>3+</sup></small>, the afterglow could be transitioned from green (LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small>:Tb<small><sup>3+</sup></small>) to orange (LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small>:Sm<small><sup>3+</sup></small>) and then to yellow (LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small>:Tb<small><sup>3+</sup></small>,Sm<small><sup>3+</sup></small>). Structural analysis reveals that Tb<small><sup>3+</sup></small> and Sm<small><sup>3+</sup></small> ions have occupied the octahedral sites (Ga sites) in the LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small> anti-spinel structure, which makes them close to intrinsic defects beneficial for the afterglow. Furthermore, the process of energy transfer from Tb<small><sup>3+</sup></small> to Sm<small><sup>3+</sup></small> ions and the sharing of oxygen vacancy defects are importantly outlined in order to elucidate the mechanism behind the multi-color afterglow phenomenon. The tunable afterglow-emitting glass ceramics provide a novel approach for optical anti-counterfeiting and information encryption, thereby enriching the visual diversity of displayed information.</p>","PeriodicalId":84,"journal":{"name":"Journal of Materials Chemistry C","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-color afterglow of the LiGa5O8:Tb3+/Sm3+ co-doped gallosilicate glass via energy transfer and trap sharing for optical anti-counterfeiting†\",\"authors\":\"Jing Li, Dan Zhang, Yixi Wu, Lulu Li, Xinlian Zhang, Shiqing Xu and Junjie Zhang\",\"doi\":\"10.1039/D4TC03171G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Long afterglow materials with excellent optical properties and stable performance are urgently required, particularly in the fields of anti-counterfeiting and encryption. Nowadays, glass ceramics are promising candidates for afterglow, due to their good ability to capture photons and robust chemical stability. Here, a series of Tb<small><sup>3+</sup></small>/Sm<small><sup>3+</sup></small> co-doped gallosilicate glass precursors were prepared <em>via</em> a high-temperature melting method, forming transparent glass ceramics containing LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small> nanocrystals by heat-treatment. The afterglow phenomenon was observed in these samples after turning off UV irradiation, and subsequent investigation showed that, by controlling the concentration of two rare earth ions Tb<small><sup>3+</sup></small> and Sm<small><sup>3+</sup></small>, the afterglow could be transitioned from green (LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small>:Tb<small><sup>3+</sup></small>) to orange (LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small>:Sm<small><sup>3+</sup></small>) and then to yellow (LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small>:Tb<small><sup>3+</sup></small>,Sm<small><sup>3+</sup></small>). Structural analysis reveals that Tb<small><sup>3+</sup></small> and Sm<small><sup>3+</sup></small> ions have occupied the octahedral sites (Ga sites) in the LiGa<small><sub>5</sub></small>O<small><sub>8</sub></small> anti-spinel structure, which makes them close to intrinsic defects beneficial for the afterglow. Furthermore, the process of energy transfer from Tb<small><sup>3+</sup></small> to Sm<small><sup>3+</sup></small> ions and the sharing of oxygen vacancy defects are importantly outlined in order to elucidate the mechanism behind the multi-color afterglow phenomenon. The tunable afterglow-emitting glass ceramics provide a novel approach for optical anti-counterfeiting and information encryption, thereby enriching the visual diversity of displayed information.</p>\",\"PeriodicalId\":84,\"journal\":{\"name\":\"Journal of Materials Chemistry C\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry C\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03171g\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry C","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2024/tc/d4tc03171g","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

特别是在防伪和加密领域,迫切需要具有优异光学特性和稳定性能的长余辉材料。目前,玻璃陶瓷因其良好的光子捕获能力和强大的化学稳定性而成为余辉材料的理想候选材料。本文通过高温熔融法制备了一系列 Tb3+/Sm3+ 共掺杂的五倍子硅酸盐玻璃前驱体,并通过热处理形成了含有 LiGa5O8 纳米晶体的透明玻璃陶瓷。随后的研究表明,通过控制两种稀土离子 Tb3+ 和 Sm3+ 的浓度,余辉可以从绿色(LiGa5O8:Tb3+)过渡到橙色(LiGa5O8:Sm3+),然后再过渡到黄色(LiGa5O8:Tb3+,Sm3+)。结构分析表明,Tb3+ 和 Sm3+ 离子占据了 LiGa5O8 反尖晶石结构中的八面体位(Ga 位),这使得它们接近于有利于产生余辉的本征缺陷。此外,为了阐明多色余辉现象背后的机理,还重点概述了从 Tb3+ 到 Sm3+ 离子的能量转移过程以及氧空位缺陷的共享。可调余辉发光玻璃陶瓷为光学防伪和信息加密提供了一种新方法,从而丰富了显示信息的视觉多样性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-color afterglow of the LiGa5O8:Tb3+/Sm3+ co-doped gallosilicate glass via energy transfer and trap sharing for optical anti-counterfeiting†

Long afterglow materials with excellent optical properties and stable performance are urgently required, particularly in the fields of anti-counterfeiting and encryption. Nowadays, glass ceramics are promising candidates for afterglow, due to their good ability to capture photons and robust chemical stability. Here, a series of Tb3+/Sm3+ co-doped gallosilicate glass precursors were prepared via a high-temperature melting method, forming transparent glass ceramics containing LiGa5O8 nanocrystals by heat-treatment. The afterglow phenomenon was observed in these samples after turning off UV irradiation, and subsequent investigation showed that, by controlling the concentration of two rare earth ions Tb3+ and Sm3+, the afterglow could be transitioned from green (LiGa5O8:Tb3+) to orange (LiGa5O8:Sm3+) and then to yellow (LiGa5O8:Tb3+,Sm3+). Structural analysis reveals that Tb3+ and Sm3+ ions have occupied the octahedral sites (Ga sites) in the LiGa5O8 anti-spinel structure, which makes them close to intrinsic defects beneficial for the afterglow. Furthermore, the process of energy transfer from Tb3+ to Sm3+ ions and the sharing of oxygen vacancy defects are importantly outlined in order to elucidate the mechanism behind the multi-color afterglow phenomenon. The tunable afterglow-emitting glass ceramics provide a novel approach for optical anti-counterfeiting and information encryption, thereby enriching the visual diversity of displayed information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry C
Journal of Materials Chemistry C MATERIALS SCIENCE, MULTIDISCIPLINARY-PHYSICS, APPLIED
CiteScore
10.80
自引率
6.20%
发文量
1468
期刊介绍: The Journal of Materials Chemistry is divided into three distinct sections, A, B, and C, each catering to specific applications of the materials under study: Journal of Materials Chemistry A focuses primarily on materials intended for applications in energy and sustainability. Journal of Materials Chemistry B specializes in materials designed for applications in biology and medicine. Journal of Materials Chemistry C is dedicated to materials suitable for applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry C are listed below. This list is neither exhaustive nor exclusive. Bioelectronics Conductors Detectors Dielectrics Displays Ferroelectrics Lasers LEDs Lighting Liquid crystals Memory Metamaterials Multiferroics Photonics Photovoltaics Semiconductors Sensors Single molecule conductors Spintronics Superconductors Thermoelectrics Topological insulators Transistors
期刊最新文献
Back cover Inside back cover Back cover Heat capacity and structural transition effect in polycrystalline kesterite† A special collection honoring Professor Thom Palstra, an exceptional scientist, leader and mentor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1