为全景叙事接地而动态提示冻结文本到图像的扩散模型

Hongyu Li, Tianrui Hui, Zihan Ding, Jing Zhang, Bin Ma, Xiaoming Wei, Jizhong Han, Si Liu
{"title":"为全景叙事接地而动态提示冻结文本到图像的扩散模型","authors":"Hongyu Li, Tianrui Hui, Zihan Ding, Jing Zhang, Bin Ma, Xiaoming Wei, Jizhong Han, Si Liu","doi":"arxiv-2409.08251","DOIUrl":null,"url":null,"abstract":"Panoptic narrative grounding (PNG), whose core target is fine-grained\nimage-text alignment, requires a panoptic segmentation of referred objects\ngiven a narrative caption. Previous discriminative methods achieve only weak or\ncoarse-grained alignment by panoptic segmentation pretraining or CLIP model\nadaptation. Given the recent progress of text-to-image Diffusion models,\nseveral works have shown their capability to achieve fine-grained image-text\nalignment through cross-attention maps and improved general segmentation\nperformance. However, the direct use of phrase features as static prompts to\napply frozen Diffusion models to the PNG task still suffers from a large task\ngap and insufficient vision-language interaction, yielding inferior\nperformance. Therefore, we propose an Extractive-Injective Phrase Adapter\n(EIPA) bypass within the Diffusion UNet to dynamically update phrase prompts\nwith image features and inject the multimodal cues back, which leverages the\nfine-grained image-text alignment capability of Diffusion models more\nsufficiently. In addition, we also design a Multi-Level Mutual Aggregation\n(MLMA) module to reciprocally fuse multi-level image and phrase features for\nsegmentation refinement. Extensive experiments on the PNG benchmark show that\nour method achieves new state-of-the-art performance.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic Prompting of Frozen Text-to-Image Diffusion Models for Panoptic Narrative Grounding\",\"authors\":\"Hongyu Li, Tianrui Hui, Zihan Ding, Jing Zhang, Bin Ma, Xiaoming Wei, Jizhong Han, Si Liu\",\"doi\":\"arxiv-2409.08251\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Panoptic narrative grounding (PNG), whose core target is fine-grained\\nimage-text alignment, requires a panoptic segmentation of referred objects\\ngiven a narrative caption. Previous discriminative methods achieve only weak or\\ncoarse-grained alignment by panoptic segmentation pretraining or CLIP model\\nadaptation. Given the recent progress of text-to-image Diffusion models,\\nseveral works have shown their capability to achieve fine-grained image-text\\nalignment through cross-attention maps and improved general segmentation\\nperformance. However, the direct use of phrase features as static prompts to\\napply frozen Diffusion models to the PNG task still suffers from a large task\\ngap and insufficient vision-language interaction, yielding inferior\\nperformance. Therefore, we propose an Extractive-Injective Phrase Adapter\\n(EIPA) bypass within the Diffusion UNet to dynamically update phrase prompts\\nwith image features and inject the multimodal cues back, which leverages the\\nfine-grained image-text alignment capability of Diffusion models more\\nsufficiently. In addition, we also design a Multi-Level Mutual Aggregation\\n(MLMA) module to reciprocally fuse multi-level image and phrase features for\\nsegmentation refinement. Extensive experiments on the PNG benchmark show that\\nour method achieves new state-of-the-art performance.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08251\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08251","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

全景叙事接地(PNG)的核心目标是细粒度图像-文本配准,它需要在叙事标题下对所指对象进行全景分割。以前的判别方法只能通过全景分割预训练或 CLIP 模型适应来实现微弱或粗粒度的配准。鉴于文本到图像扩散模型最近取得的进展,有几项研究表明它们有能力通过交叉注意图实现精细的图像-文本配准,并提高一般分割性能。然而,直接使用短语特征作为静态提示,将冻结的 Diffusion 模型应用到 PNG 任务中,仍然存在较大的任务差距和视觉语言交互不足的问题,导致性能较差。因此,我们在 Diffusion UNet 中提出了提取-注入短语适配器(EIPA)旁路,利用图像特征动态更新短语提示,并将多模态线索注入回来,从而更有效地利用了 Diffusion 模型的精细图像-文本配准能力。此外,我们还设计了一个多级相互聚合(MLMA)模块,用于相互融合多级图像和短语特征以细化分割。在 PNG 基准上进行的大量实验表明,我们的方法达到了最先进的新性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Prompting of Frozen Text-to-Image Diffusion Models for Panoptic Narrative Grounding
Panoptic narrative grounding (PNG), whose core target is fine-grained image-text alignment, requires a panoptic segmentation of referred objects given a narrative caption. Previous discriminative methods achieve only weak or coarse-grained alignment by panoptic segmentation pretraining or CLIP model adaptation. Given the recent progress of text-to-image Diffusion models, several works have shown their capability to achieve fine-grained image-text alignment through cross-attention maps and improved general segmentation performance. However, the direct use of phrase features as static prompts to apply frozen Diffusion models to the PNG task still suffers from a large task gap and insufficient vision-language interaction, yielding inferior performance. Therefore, we propose an Extractive-Injective Phrase Adapter (EIPA) bypass within the Diffusion UNet to dynamically update phrase prompts with image features and inject the multimodal cues back, which leverages the fine-grained image-text alignment capability of Diffusion models more sufficiently. In addition, we also design a Multi-Level Mutual Aggregation (MLMA) module to reciprocally fuse multi-level image and phrase features for segmentation refinement. Extensive experiments on the PNG benchmark show that our method achieves new state-of-the-art performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1