控制+转变:产生可控的分配转变

Roy Friedman, Rhea Chowers
{"title":"控制+转变:产生可控的分配转变","authors":"Roy Friedman, Rhea Chowers","doi":"arxiv-2409.07940","DOIUrl":null,"url":null,"abstract":"We propose a new method for generating realistic datasets with distribution\nshifts using any decoder-based generative model. Our approach systematically\ncreates datasets with varying intensities of distribution shifts, facilitating\na comprehensive analysis of model performance degradation. We then use these\ngenerated datasets to evaluate the performance of various commonly used\nnetworks and observe a consistent decline in performance with increasing shift\nintensity, even when the effect is almost perceptually unnoticeable to the\nhuman eye. We see this degradation even when using data augmentations. We also\nfind that enlarging the training dataset beyond a certain point has no effect\non the robustness and that stronger inductive biases increase robustness.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"155 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Control+Shift: Generating Controllable Distribution Shifts\",\"authors\":\"Roy Friedman, Rhea Chowers\",\"doi\":\"arxiv-2409.07940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a new method for generating realistic datasets with distribution\\nshifts using any decoder-based generative model. Our approach systematically\\ncreates datasets with varying intensities of distribution shifts, facilitating\\na comprehensive analysis of model performance degradation. We then use these\\ngenerated datasets to evaluate the performance of various commonly used\\nnetworks and observe a consistent decline in performance with increasing shift\\nintensity, even when the effect is almost perceptually unnoticeable to the\\nhuman eye. We see this degradation even when using data augmentations. We also\\nfind that enlarging the training dataset beyond a certain point has no effect\\non the robustness and that stronger inductive biases increase robustness.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":\"155 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种新方法,可以使用任何基于解码器的生成模型生成具有分布偏移的真实数据集。我们的方法可以系统地创建具有不同分布偏移强度的数据集,从而有助于对模型性能退化进行全面分析。然后,我们使用这些生成的数据集来评估各种常用网络的性能,并观察到性能随着偏移强度的增加而持续下降,即使人眼几乎感觉不到这种影响。即使在使用数据增强时,我们也能看到这种性能下降。我们还发现,将训练数据集扩大到一定程度后对鲁棒性没有影响,而更强的归纳偏差会提高鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Control+Shift: Generating Controllable Distribution Shifts
We propose a new method for generating realistic datasets with distribution shifts using any decoder-based generative model. Our approach systematically creates datasets with varying intensities of distribution shifts, facilitating a comprehensive analysis of model performance degradation. We then use these generated datasets to evaluate the performance of various commonly used networks and observe a consistent decline in performance with increasing shift intensity, even when the effect is almost perceptually unnoticeable to the human eye. We see this degradation even when using data augmentations. We also find that enlarging the training dataset beyond a certain point has no effect on the robustness and that stronger inductive biases increase robustness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1