稀疏 R-CNN OBB:基于定向稀疏提议的合成孔径雷达图像中的舰船目标探测

Kamirul Kamirul, Odysseas Pappas, Alin Achim
{"title":"稀疏 R-CNN OBB:基于定向稀疏提议的合成孔径雷达图像中的舰船目标探测","authors":"Kamirul Kamirul, Odysseas Pappas, Alin Achim","doi":"arxiv-2409.07973","DOIUrl":null,"url":null,"abstract":"We present Sparse R-CNN OBB, a novel framework for the detection of oriented\nobjects in SAR images leveraging sparse learnable proposals. The Sparse R-CNN\nOBB has streamlined architecture and ease of training as it utilizes a sparse\nset of 300 proposals instead of training a proposals generator on hundreds of\nthousands of anchors. To the best of our knowledge, Sparse R-CNN OBB is the\nfirst to adopt the concept of sparse learnable proposals for the detection of\noriented objects, as well as for the detection of ships in Synthetic Aperture\nRadar (SAR) images. The detection head of the baseline model, Sparse R-CNN, is\nre-designed to enable the model to capture object orientation. We also\nfine-tune the model on RSDD-SAR dataset and provide a performance comparison to\nstate-of-the-art models. Experimental results shows that Sparse R-CNN OBB\nachieves outstanding performance, surpassing other models on both inshore and\noffshore scenarios. The code is available at:\nwww.github.com/ka-mirul/Sparse-R-CNN-OBB.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sparse R-CNN OBB: Ship Target Detection in SAR Images Based on Oriented Sparse Proposals\",\"authors\":\"Kamirul Kamirul, Odysseas Pappas, Alin Achim\",\"doi\":\"arxiv-2409.07973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present Sparse R-CNN OBB, a novel framework for the detection of oriented\\nobjects in SAR images leveraging sparse learnable proposals. The Sparse R-CNN\\nOBB has streamlined architecture and ease of training as it utilizes a sparse\\nset of 300 proposals instead of training a proposals generator on hundreds of\\nthousands of anchors. To the best of our knowledge, Sparse R-CNN OBB is the\\nfirst to adopt the concept of sparse learnable proposals for the detection of\\noriented objects, as well as for the detection of ships in Synthetic Aperture\\nRadar (SAR) images. The detection head of the baseline model, Sparse R-CNN, is\\nre-designed to enable the model to capture object orientation. We also\\nfine-tune the model on RSDD-SAR dataset and provide a performance comparison to\\nstate-of-the-art models. Experimental results shows that Sparse R-CNN OBB\\nachieves outstanding performance, surpassing other models on both inshore and\\noffshore scenarios. The code is available at:\\nwww.github.com/ka-mirul/Sparse-R-CNN-OBB.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了稀疏 R-CNN OBB,这是一种利用稀疏可学习提案检测合成孔径雷达图像中定向物体的新型框架。稀疏 R-CNN OBB 架构精简,易于训练,因为它利用了 300 个提案的稀疏集,而不是在数十万个锚点上训练提案生成器。据我们所知,稀疏 R-CNN OBB 是第一个采用稀疏可学习提案概念来检测定向物体以及合成孔径雷达(SAR)图像中的船只的方法。我们对基线模型--稀疏 R-CNN 的检测头进行了重新设计,使该模型能够捕捉物体的方向。我们还在 RSDD-SAR 数据集上对模型进行了微调,并与最先进的模型进行了性能比较。实验结果表明,稀疏 R-CNN OBB 性能突出,在近岸和离岸场景中都超过了其他模型。代码可在以下网址获取:www.github.com/ka-mirul/Sparse-R-CNN-OBB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sparse R-CNN OBB: Ship Target Detection in SAR Images Based on Oriented Sparse Proposals
We present Sparse R-CNN OBB, a novel framework for the detection of oriented objects in SAR images leveraging sparse learnable proposals. The Sparse R-CNN OBB has streamlined architecture and ease of training as it utilizes a sparse set of 300 proposals instead of training a proposals generator on hundreds of thousands of anchors. To the best of our knowledge, Sparse R-CNN OBB is the first to adopt the concept of sparse learnable proposals for the detection of oriented objects, as well as for the detection of ships in Synthetic Aperture Radar (SAR) images. The detection head of the baseline model, Sparse R-CNN, is re-designed to enable the model to capture object orientation. We also fine-tune the model on RSDD-SAR dataset and provide a performance comparison to state-of-the-art models. Experimental results shows that Sparse R-CNN OBB achieves outstanding performance, surpassing other models on both inshore and offshore scenarios. The code is available at: www.github.com/ka-mirul/Sparse-R-CNN-OBB.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1