从 COCO 到 COCO-FP:深入探讨 COCO 检测器的背景误报问题

Longfei Liu, Wen Guo, Shihua Huang, Cheng Li, Xi Shen
{"title":"从 COCO 到 COCO-FP:深入探讨 COCO 检测器的背景误报问题","authors":"Longfei Liu, Wen Guo, Shihua Huang, Cheng Li, Xi Shen","doi":"arxiv-2409.07907","DOIUrl":null,"url":null,"abstract":"Reducing false positives is essential for enhancing object detector\nperformance, as reflected in the mean Average Precision (mAP) metric. Although\nobject detectors have achieved notable improvements and high mAP scores on the\nCOCO dataset, analysis reveals limited progress in addressing false positives\ncaused by non-target visual clutter-background objects not included in the\nannotated categories. This issue is particularly critical in real-world\napplications, such as fire and smoke detection, where minimizing false alarms\nis crucial. In this study, we introduce COCO-FP, a new evaluation dataset\nderived from the ImageNet-1K dataset, designed to address this issue. By\nextending the original COCO validation dataset, COCO-FP specifically assesses\nobject detectors' performance in mitigating background false positives. Our\nevaluation of both standard and advanced object detectors shows a significant\nnumber of false positives in both closed-set and open-set scenarios. For\nexample, the AP50 metric for YOLOv9-E decreases from 72.8 to 65.7 when shifting\nfrom COCO to COCO-FP. The dataset is available at\nhttps://github.com/COCO-FP/COCO-FP.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From COCO to COCO-FP: A Deep Dive into Background False Positives for COCO Detectors\",\"authors\":\"Longfei Liu, Wen Guo, Shihua Huang, Cheng Li, Xi Shen\",\"doi\":\"arxiv-2409.07907\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing false positives is essential for enhancing object detector\\nperformance, as reflected in the mean Average Precision (mAP) metric. Although\\nobject detectors have achieved notable improvements and high mAP scores on the\\nCOCO dataset, analysis reveals limited progress in addressing false positives\\ncaused by non-target visual clutter-background objects not included in the\\nannotated categories. This issue is particularly critical in real-world\\napplications, such as fire and smoke detection, where minimizing false alarms\\nis crucial. In this study, we introduce COCO-FP, a new evaluation dataset\\nderived from the ImageNet-1K dataset, designed to address this issue. By\\nextending the original COCO validation dataset, COCO-FP specifically assesses\\nobject detectors' performance in mitigating background false positives. Our\\nevaluation of both standard and advanced object detectors shows a significant\\nnumber of false positives in both closed-set and open-set scenarios. For\\nexample, the AP50 metric for YOLOv9-E decreases from 72.8 to 65.7 when shifting\\nfrom COCO to COCO-FP. The dataset is available at\\nhttps://github.com/COCO-FP/COCO-FP.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07907\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07907","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

减少误报对于提高目标检测器性能至关重要,这反映在平均精度(mAP)指标上。尽管物体检测器在 COCO 数据集上取得了显著的改进和较高的 mAP 分数,但分析表明,在解决由非目标视觉杂波--未包含在标注类别中的背景物体--引起的误报方面进展有限。这个问题在火灾和烟雾检测等实际应用中尤为关键,因为在这些应用中,尽量减少误报是至关重要的。在本研究中,我们介绍了 COCO-FP,这是一个从 ImageNet-1K 数据集中提取的新评估数据集,旨在解决这一问题。通过扩展原始 COCO 验证数据集,COCO-FP 专门评估了物体检测器在减少背景误报方面的性能。对标准和高级物体检测器的评估结果表明,在封闭集和开放集场景中都存在大量误报。例如,当从 COCO 转向 COCO-FP 时,YOLOv9-E 的 AP50 指标从 72.8 降至 65.7。数据集可在https://github.com/COCO-FP/COCO-FP。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
From COCO to COCO-FP: A Deep Dive into Background False Positives for COCO Detectors
Reducing false positives is essential for enhancing object detector performance, as reflected in the mean Average Precision (mAP) metric. Although object detectors have achieved notable improvements and high mAP scores on the COCO dataset, analysis reveals limited progress in addressing false positives caused by non-target visual clutter-background objects not included in the annotated categories. This issue is particularly critical in real-world applications, such as fire and smoke detection, where minimizing false alarms is crucial. In this study, we introduce COCO-FP, a new evaluation dataset derived from the ImageNet-1K dataset, designed to address this issue. By extending the original COCO validation dataset, COCO-FP specifically assesses object detectors' performance in mitigating background false positives. Our evaluation of both standard and advanced object detectors shows a significant number of false positives in both closed-set and open-set scenarios. For example, the AP50 metric for YOLOv9-E decreases from 72.8 to 65.7 when shifting from COCO to COCO-FP. The dataset is available at https://github.com/COCO-FP/COCO-FP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1