显微曼巴仅用 4M 参数揭示显微图像的秘密

Shun Zou, Zhuo Zhang, Yi Zou, Guangwei Gao
{"title":"显微曼巴仅用 4M 参数揭示显微图像的秘密","authors":"Shun Zou, Zhuo Zhang, Yi Zou, Guangwei Gao","doi":"arxiv-2409.07896","DOIUrl":null,"url":null,"abstract":"In the field of medical microscopic image classification (MIC), CNN-based and\nTransformer-based models have been extensively studied. However, CNNs struggle\nwith modeling long-range dependencies, limiting their ability to fully utilize\nsemantic information in images. Conversely, Transformers are hampered by the\ncomplexity of quadratic computations. To address these challenges, we propose a\nmodel based on the Mamba architecture: Microscopic-Mamba. Specifically, we\ndesigned the Partially Selected Feed-Forward Network (PSFFN) to replace the\nlast linear layer of the Visual State Space Module (VSSM), enhancing Mamba's\nlocal feature extraction capabilities. Additionally, we introduced the\nModulation Interaction Feature Aggregation (MIFA) module to effectively\nmodulate and dynamically aggregate global and local features. We also\nincorporated a parallel VSSM mechanism to improve inter-channel information\ninteraction while reducing the number of parameters. Extensive experiments have\ndemonstrated that our method achieves state-of-the-art performance on five\npublic datasets. Code is available at\nhttps://github.com/zs1314/Microscopic-Mamba","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters\",\"authors\":\"Shun Zou, Zhuo Zhang, Yi Zou, Guangwei Gao\",\"doi\":\"arxiv-2409.07896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of medical microscopic image classification (MIC), CNN-based and\\nTransformer-based models have been extensively studied. However, CNNs struggle\\nwith modeling long-range dependencies, limiting their ability to fully utilize\\nsemantic information in images. Conversely, Transformers are hampered by the\\ncomplexity of quadratic computations. To address these challenges, we propose a\\nmodel based on the Mamba architecture: Microscopic-Mamba. Specifically, we\\ndesigned the Partially Selected Feed-Forward Network (PSFFN) to replace the\\nlast linear layer of the Visual State Space Module (VSSM), enhancing Mamba's\\nlocal feature extraction capabilities. Additionally, we introduced the\\nModulation Interaction Feature Aggregation (MIFA) module to effectively\\nmodulate and dynamically aggregate global and local features. We also\\nincorporated a parallel VSSM mechanism to improve inter-channel information\\ninteraction while reducing the number of parameters. Extensive experiments have\\ndemonstrated that our method achieves state-of-the-art performance on five\\npublic datasets. Code is available at\\nhttps://github.com/zs1314/Microscopic-Mamba\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在医学显微图像分类(MIC)领域,基于 CNN 和基于变换器的模型已被广泛研究。然而,CNN 在长程依赖性建模方面存在困难,限制了其充分利用图像中语义信息的能力。相反,变换器则受到二次计算复杂性的阻碍。为了应对这些挑战,我们提出了基于 Mamba 架构的模型:微观曼巴。具体来说,我们设计了部分选择前馈网络(PSFFN)来取代视觉状态空间模块(VSSM)的最后一层线性层,从而增强了 Mamba 的局部特征提取能力。此外,我们还引入了调制交互特征聚合(MIFA)模块,以有效调制并动态聚合全局和局部特征。我们还加入了并行 VSSM 机制,在减少参数数量的同时改善通道间的信息交互。广泛的实验证明,我们的方法在五个公开数据集上达到了最先进的性能。代码见:https://github.com/zs1314/Microscopic-Mamba
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Microscopic-Mamba: Revealing the Secrets of Microscopic Images with Just 4M Parameters
In the field of medical microscopic image classification (MIC), CNN-based and Transformer-based models have been extensively studied. However, CNNs struggle with modeling long-range dependencies, limiting their ability to fully utilize semantic information in images. Conversely, Transformers are hampered by the complexity of quadratic computations. To address these challenges, we propose a model based on the Mamba architecture: Microscopic-Mamba. Specifically, we designed the Partially Selected Feed-Forward Network (PSFFN) to replace the last linear layer of the Visual State Space Module (VSSM), enhancing Mamba's local feature extraction capabilities. Additionally, we introduced the Modulation Interaction Feature Aggregation (MIFA) module to effectively modulate and dynamically aggregate global and local features. We also incorporated a parallel VSSM mechanism to improve inter-channel information interaction while reducing the number of parameters. Extensive experiments have demonstrated that our method achieves state-of-the-art performance on five public datasets. Code is available at https://github.com/zs1314/Microscopic-Mamba
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1