关于缺失模态深度多模态学习的全面调查

Renjie Wu, Hu Wang, Hsiang-Ting Chen
{"title":"关于缺失模态深度多模态学习的全面调查","authors":"Renjie Wu, Hu Wang, Hsiang-Ting Chen","doi":"arxiv-2409.07825","DOIUrl":null,"url":null,"abstract":"During multimodal model training and reasoning, data samples may miss certain\nmodalities and lead to compromised model performance due to sensor limitations,\ncost constraints, privacy concerns, data loss, and temporal and spatial\nfactors. This survey provides an overview of recent progress in Multimodal\nLearning with Missing Modality (MLMM), focusing on deep learning techniques. It\nis the first comprehensive survey that covers the historical background and the\ndistinction between MLMM and standard multimodal learning setups, followed by a\ndetailed analysis of current MLMM methods, applications, and datasets,\nconcluding with a discussion about challenges and potential future directions\nin the field.","PeriodicalId":501130,"journal":{"name":"arXiv - CS - Computer Vision and Pattern Recognition","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Comprehensive Survey on Deep Multimodal Learning with Missing Modality\",\"authors\":\"Renjie Wu, Hu Wang, Hsiang-Ting Chen\",\"doi\":\"arxiv-2409.07825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"During multimodal model training and reasoning, data samples may miss certain\\nmodalities and lead to compromised model performance due to sensor limitations,\\ncost constraints, privacy concerns, data loss, and temporal and spatial\\nfactors. This survey provides an overview of recent progress in Multimodal\\nLearning with Missing Modality (MLMM), focusing on deep learning techniques. It\\nis the first comprehensive survey that covers the historical background and the\\ndistinction between MLMM and standard multimodal learning setups, followed by a\\ndetailed analysis of current MLMM methods, applications, and datasets,\\nconcluding with a discussion about challenges and potential future directions\\nin the field.\",\"PeriodicalId\":501130,\"journal\":{\"name\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在多模态模型训练和推理过程中,由于传感器限制、成本约束、隐私问题、数据丢失以及时间和空间因素,数据样本可能会遗漏某些模态,导致模型性能受损。本调查概述了有缺失模态的多模态学习(MLMM)的最新进展,重点关注深度学习技术。这是第一份全面的调查报告,涵盖了 MLMM 与标准多模态学习设置之间的历史背景和区别,随后详细分析了当前的 MLMM 方法、应用和数据集,最后讨论了该领域面临的挑战和潜在的未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Comprehensive Survey on Deep Multimodal Learning with Missing Modality
During multimodal model training and reasoning, data samples may miss certain modalities and lead to compromised model performance due to sensor limitations, cost constraints, privacy concerns, data loss, and temporal and spatial factors. This survey provides an overview of recent progress in Multimodal Learning with Missing Modality (MLMM), focusing on deep learning techniques. It is the first comprehensive survey that covers the historical background and the distinction between MLMM and standard multimodal learning setups, followed by a detailed analysis of current MLMM methods, applications, and datasets, concluding with a discussion about challenges and potential future directions in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Massively Multi-Person 3D Human Motion Forecasting with Scene Context Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution Precise Forecasting of Sky Images Using Spatial Warping JEAN: Joint Expression and Audio-guided NeRF-based Talking Face Generation Applications of Knowledge Distillation in Remote Sensing: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1