{"title":"受冗余信道和加性时变延迟影响的饱和非线性系统的故障检测","authors":"Zhihui Wu, Xue Zhao, Siteng Ma, Dongyan Chen","doi":"10.1002/acs.3889","DOIUrl":null,"url":null,"abstract":"<p>Under the influence of sensor saturation and packet dropout, this paper is concerned with the fault detection (FD) problem for a class of nonlinear systems with two additive time-varying delay components. In the addressed measurement model, the sensor is assumed to have two communication channels, which can contribute to improving the probability of successfully delivering the measurements. A FD filter is designed to generate residual signals, and the sufficient criteria are established to ensure the stochastic finite-time stability (SFTS) of the residual system with <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mrow>\n <mi>H</mi>\n </mrow>\n <mrow>\n <mi>∞</mi>\n </mrow>\n </msub>\n </mrow>\n <annotation>$$ {H}_{\\infty } $$</annotation>\n </semantics></math> performance constraint by constructing new Lyapunov-Krasovskii functionals. Based on the established criteria, the explicit expression of the desired FD filter is obtained via solving a set of linear matrix inequalities (LMIs). Finally, the usefulness of the proposed FD scheme is verified by a simulation example.</p>","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"38 11","pages":"3540-3560"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fault detection for saturated nonlinear system subject to redundant channel and additive time-varying delays\",\"authors\":\"Zhihui Wu, Xue Zhao, Siteng Ma, Dongyan Chen\",\"doi\":\"10.1002/acs.3889\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Under the influence of sensor saturation and packet dropout, this paper is concerned with the fault detection (FD) problem for a class of nonlinear systems with two additive time-varying delay components. In the addressed measurement model, the sensor is assumed to have two communication channels, which can contribute to improving the probability of successfully delivering the measurements. A FD filter is designed to generate residual signals, and the sufficient criteria are established to ensure the stochastic finite-time stability (SFTS) of the residual system with <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>H</mi>\\n </mrow>\\n <mrow>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation>$$ {H}_{\\\\infty } $$</annotation>\\n </semantics></math> performance constraint by constructing new Lyapunov-Krasovskii functionals. Based on the established criteria, the explicit expression of the desired FD filter is obtained via solving a set of linear matrix inequalities (LMIs). Finally, the usefulness of the proposed FD scheme is verified by a simulation example.</p>\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"38 11\",\"pages\":\"3540-3560\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/acs.3889\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/acs.3889","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Fault detection for saturated nonlinear system subject to redundant channel and additive time-varying delays
Under the influence of sensor saturation and packet dropout, this paper is concerned with the fault detection (FD) problem for a class of nonlinear systems with two additive time-varying delay components. In the addressed measurement model, the sensor is assumed to have two communication channels, which can contribute to improving the probability of successfully delivering the measurements. A FD filter is designed to generate residual signals, and the sufficient criteria are established to ensure the stochastic finite-time stability (SFTS) of the residual system with performance constraint by constructing new Lyapunov-Krasovskii functionals. Based on the established criteria, the explicit expression of the desired FD filter is obtained via solving a set of linear matrix inequalities (LMIs). Finally, the usefulness of the proposed FD scheme is verified by a simulation example.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.