加速结构稳定性无能量计算器

Alexandre Boucher, Cameron Beevers, Bertrand Gauthier, Alberto Roldan
{"title":"加速结构稳定性无能量计算器","authors":"Alexandre Boucher, Cameron Beevers, Bertrand Gauthier, Alberto Roldan","doi":"arxiv-2408.14577","DOIUrl":null,"url":null,"abstract":"Computational modeling is an integral part of catalysis research. With it,\nnew methodologies are being developed and implemented to improve the accuracy\nof simulations while reducing the computational cost. In particular, specific\nmachine-learning techniques have been applied to build interatomic potential\nfrom ab initio results. Here, We report an energy-free machine-learning\ncalculator that combines three individually trained neural networks to predict\nthe energy and atomic forces of particulate matter. Three structures were\ninvestigated: a monometallic nanoparticle, a bimetallic nanoalloy, and a\nsupported metal crystallites. Atomic energies were predicted via a graph neural\nnetwork, leading to a mean absolute error (MAE) within 0.004 eV from Density\nFunctional Theory (DFT) calculations. The task of predicting atomic forces was\nsplit over two feedforward networks, one predicting the force's norm and\nanother its direction. The force prediction resulted in a MAE within 0.080 eV/A\nagainst DFT results. The interpretability of the graph neural network\npredictions was demonstrated by underlying the physics of the monometallic\nparticle in the form of cohesion energy.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerated structure-stability energy-free calculator\",\"authors\":\"Alexandre Boucher, Cameron Beevers, Bertrand Gauthier, Alberto Roldan\",\"doi\":\"arxiv-2408.14577\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Computational modeling is an integral part of catalysis research. With it,\\nnew methodologies are being developed and implemented to improve the accuracy\\nof simulations while reducing the computational cost. In particular, specific\\nmachine-learning techniques have been applied to build interatomic potential\\nfrom ab initio results. Here, We report an energy-free machine-learning\\ncalculator that combines three individually trained neural networks to predict\\nthe energy and atomic forces of particulate matter. Three structures were\\ninvestigated: a monometallic nanoparticle, a bimetallic nanoalloy, and a\\nsupported metal crystallites. Atomic energies were predicted via a graph neural\\nnetwork, leading to a mean absolute error (MAE) within 0.004 eV from Density\\nFunctional Theory (DFT) calculations. The task of predicting atomic forces was\\nsplit over two feedforward networks, one predicting the force's norm and\\nanother its direction. The force prediction resulted in a MAE within 0.080 eV/A\\nagainst DFT results. The interpretability of the graph neural network\\npredictions was demonstrated by underlying the physics of the monometallic\\nparticle in the form of cohesion energy.\",\"PeriodicalId\":501259,\"journal\":{\"name\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.14577\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.14577","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算建模是催化研究不可或缺的一部分。随着它的发展,人们正在开发和实施新的方法,以提高模拟的准确性,同时降低计算成本。特别是,特定的机器学习技术已被用于根据原子序数结果建立原子间势。在此,我们报告了一种无能量机器学习计算器,它结合了三个单独训练的神经网络来预测微粒物质的能量和原子力。我们研究了三种结构:单金属纳米粒子、双金属纳米合金和支撑金属晶体。通过图神经网络预测了原子能量,与密度函数理论(DFT)计算结果相比,平均绝对误差(MAE)在 0.004 eV 以内。预测原子力的任务由两个前馈网络分担,一个预测力的标准,另一个预测力的方向。力预测结果与 DFT 结果的最大误差在 0.080 eV/Aagainst 范围内。图神经网络预测的可解释性通过以内聚能形式为基础的单金属粒子物理学得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accelerated structure-stability energy-free calculator
Computational modeling is an integral part of catalysis research. With it, new methodologies are being developed and implemented to improve the accuracy of simulations while reducing the computational cost. In particular, specific machine-learning techniques have been applied to build interatomic potential from ab initio results. Here, We report an energy-free machine-learning calculator that combines three individually trained neural networks to predict the energy and atomic forces of particulate matter. Three structures were investigated: a monometallic nanoparticle, a bimetallic nanoalloy, and a supported metal crystallites. Atomic energies were predicted via a graph neural network, leading to a mean absolute error (MAE) within 0.004 eV from Density Functional Theory (DFT) calculations. The task of predicting atomic forces was split over two feedforward networks, one predicting the force's norm and another its direction. The force prediction resulted in a MAE within 0.080 eV/A against DFT results. The interpretability of the graph neural network predictions was demonstrated by underlying the physics of the monometallic particle in the form of cohesion energy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Types of Size-Dependent Melting in Fe Nanoclusters: a Molecular Dynamics Study How to manipulate nanoparticle morphology with vacancies Collective states of α-sexithiophene chains inside boron nitride nanotubes Accelerated structure-stability energy-free calculator Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1