Francisco Eduardo Rojas-González, Jorge Padilla-Alvarez, César Castillo-Quevedo, Rajagopal Dashinamoorthy Eithiraj, Jose Luis Cabellos
{"title":"不同温度下 Au$_{10}$ 簇的结构和红外光谱分析","authors":"Francisco Eduardo Rojas-González, Jorge Padilla-Alvarez, César Castillo-Quevedo, Rajagopal Dashinamoorthy Eithiraj, Jose Luis Cabellos","doi":"arxiv-2408.13451","DOIUrl":null,"url":null,"abstract":"Understanding the properties of Au$_{10}$ clusters entails identifying the\nlowest energy structure at cold and warm temperatures. While functional\nmaterials operate at finite temperatures, energy computations using density\nfunctional theory are typically performed at zero temperature, resulting in\nunexplored properties. Our study undertook an exploration of the potential and\nfree energy surface of the neutral Au$_{10}$ nanocluster at finite temperatures\nby employing a genetic algorithm combined with density functional theory and\nnanothermodynamics. We computed the thermal population and infrared Boltzmann\nspectrum at a finite temperature, aligning the results with validated\nexperimental data. The Zero-Order Regular Approximation (ZORA) gave\nconsideration to relativistic effects, and dispersion was incorporated using\nGrimme's dispersion D3BJ with Becke-Johnson damping. Moreover,\nnanothermodynamics was utilized to account for temperature contributions. The\ncomputed thermal population strongly supports the dominance of the 2D elongated\nhexagon configuration within a temperature range of 50 to 800 K. Importantly,\nat a temperature of 100 K, the calculated IR Boltzmann spectrum aligns with the\nexperimental IR spectrum. Lastly, the chemical bonding analysis on the lowest\nenergy structure indicates a closed-shell Au-Au interaction with a weak or\npartially covalent character.","PeriodicalId":501259,"journal":{"name":"arXiv - PHYS - Atomic and Molecular Clusters","volume":"18 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures\",\"authors\":\"Francisco Eduardo Rojas-González, Jorge Padilla-Alvarez, César Castillo-Quevedo, Rajagopal Dashinamoorthy Eithiraj, Jose Luis Cabellos\",\"doi\":\"arxiv-2408.13451\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Understanding the properties of Au$_{10}$ clusters entails identifying the\\nlowest energy structure at cold and warm temperatures. While functional\\nmaterials operate at finite temperatures, energy computations using density\\nfunctional theory are typically performed at zero temperature, resulting in\\nunexplored properties. Our study undertook an exploration of the potential and\\nfree energy surface of the neutral Au$_{10}$ nanocluster at finite temperatures\\nby employing a genetic algorithm combined with density functional theory and\\nnanothermodynamics. We computed the thermal population and infrared Boltzmann\\nspectrum at a finite temperature, aligning the results with validated\\nexperimental data. The Zero-Order Regular Approximation (ZORA) gave\\nconsideration to relativistic effects, and dispersion was incorporated using\\nGrimme's dispersion D3BJ with Becke-Johnson damping. Moreover,\\nnanothermodynamics was utilized to account for temperature contributions. The\\ncomputed thermal population strongly supports the dominance of the 2D elongated\\nhexagon configuration within a temperature range of 50 to 800 K. Importantly,\\nat a temperature of 100 K, the calculated IR Boltzmann spectrum aligns with the\\nexperimental IR spectrum. Lastly, the chemical bonding analysis on the lowest\\nenergy structure indicates a closed-shell Au-Au interaction with a weak or\\npartially covalent character.\",\"PeriodicalId\":501259,\"journal\":{\"name\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Atomic and Molecular Clusters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.13451\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Atomic and Molecular Clusters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
要了解 Au$_{10}$ 团簇的性质,就必须确定其在低温和高温下的最低能量结构。虽然功能材料是在有限温度下工作的,但使用密度功能理论进行的能量计算通常是在零温度下进行的,这就导致了未探索的性质。我们的研究采用遗传算法,结合密度泛函理论和纳米热力学,探索了中性 Au$_{10}$ 纳米团簇在有限温度下的势能和自由能面。我们计算了有限温度下的热种群和红外玻尔兹曼频谱,并将结果与经过验证的实验数据进行了比对。零阶正则近似法(ZORA)考虑了相对论效应,并使用带有贝克-约翰逊阻尼的格里姆色散 D3BJ 纳入了色散。此外,还利用纳米热力学来考虑温度贡献。重要的是,在温度为 100 K 时,计算得出的红外玻尔兹曼光谱与实验得出的红外光谱一致。最后,对最低能量结构的化学键分析表明,闭壳金-金相互作用具有弱共价或部分共价性质。
Structures and infrared spectroscopy of Au$_{10}$ cluster at different temperatures
Understanding the properties of Au$_{10}$ clusters entails identifying the
lowest energy structure at cold and warm temperatures. While functional
materials operate at finite temperatures, energy computations using density
functional theory are typically performed at zero temperature, resulting in
unexplored properties. Our study undertook an exploration of the potential and
free energy surface of the neutral Au$_{10}$ nanocluster at finite temperatures
by employing a genetic algorithm combined with density functional theory and
nanothermodynamics. We computed the thermal population and infrared Boltzmann
spectrum at a finite temperature, aligning the results with validated
experimental data. The Zero-Order Regular Approximation (ZORA) gave
consideration to relativistic effects, and dispersion was incorporated using
Grimme's dispersion D3BJ with Becke-Johnson damping. Moreover,
nanothermodynamics was utilized to account for temperature contributions. The
computed thermal population strongly supports the dominance of the 2D elongated
hexagon configuration within a temperature range of 50 to 800 K. Importantly,
at a temperature of 100 K, the calculated IR Boltzmann spectrum aligns with the
experimental IR spectrum. Lastly, the chemical bonding analysis on the lowest
energy structure indicates a closed-shell Au-Au interaction with a weak or
partially covalent character.