通过迁移学习使用预训练的深度学习模型检测阿尔茨海默病:综述

IF 10.7 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence Review Pub Date : 2024-09-05 DOI:10.1007/s10462-024-10914-z
Maleika Heenaye-Mamode Khan, Pushtika Reesaul, Muhammad Muzzammil Auzine, Amelia Taylor
{"title":"通过迁移学习使用预训练的深度学习模型检测阿尔茨海默病:综述","authors":"Maleika Heenaye-Mamode Khan,&nbsp;Pushtika Reesaul,&nbsp;Muhammad Muzzammil Auzine,&nbsp;Amelia Taylor","doi":"10.1007/s10462-024-10914-z","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the progress in image processing and Artificial Intelligence (AI), it is now possible to develop automated tool for the early detection and diagnosis of Alzheimer’s Disease (AD). Handcrafted techniques developed so far, lack generality, leading to the development of deep learning (DL) techniques, which can extract more relevant features. To cater for the limited labelled datasets and requirement in terms of high computational power, transfer learning models can be adopted as a baseline. In recent years, considerable research efforts have been devoted to developing machine learning-based techniques for AD detection and classification using medical imaging data. This survey paper comprehensively reviews the existing literature on various methodologies and approaches employed for AD detection and classification, with a focus on neuroimaging techniques such as structural MRI, PET, and fMRI. The main objective of this survey is to analyse the different transfer learning models that can be used for the deployment of deep convolution neural network for AD detection and classification. The phases involved in the development namely image capture, pre-processing, feature extraction and selection are also discussed in the view of shedding light on the different phases and challenges that need to be addressed. The research perspectives may provide research directions on the development of automated applications for AD detection and classification.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"57 10","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-024-10914-z.pdf","citationCount":"0","resultStr":"{\"title\":\"Detection of Alzheimer’s disease using pre-trained deep learning models through transfer learning: a review\",\"authors\":\"Maleika Heenaye-Mamode Khan,&nbsp;Pushtika Reesaul,&nbsp;Muhammad Muzzammil Auzine,&nbsp;Amelia Taylor\",\"doi\":\"10.1007/s10462-024-10914-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Due to the progress in image processing and Artificial Intelligence (AI), it is now possible to develop automated tool for the early detection and diagnosis of Alzheimer’s Disease (AD). Handcrafted techniques developed so far, lack generality, leading to the development of deep learning (DL) techniques, which can extract more relevant features. To cater for the limited labelled datasets and requirement in terms of high computational power, transfer learning models can be adopted as a baseline. In recent years, considerable research efforts have been devoted to developing machine learning-based techniques for AD detection and classification using medical imaging data. This survey paper comprehensively reviews the existing literature on various methodologies and approaches employed for AD detection and classification, with a focus on neuroimaging techniques such as structural MRI, PET, and fMRI. The main objective of this survey is to analyse the different transfer learning models that can be used for the deployment of deep convolution neural network for AD detection and classification. The phases involved in the development namely image capture, pre-processing, feature extraction and selection are also discussed in the view of shedding light on the different phases and challenges that need to be addressed. The research perspectives may provide research directions on the development of automated applications for AD detection and classification.</p></div>\",\"PeriodicalId\":8449,\"journal\":{\"name\":\"Artificial Intelligence Review\",\"volume\":\"57 10\",\"pages\":\"\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10462-024-10914-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence Review\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10462-024-10914-z\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-024-10914-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于图像处理和人工智能(AI)技术的进步,现在有可能开发出用于早期检测和诊断阿尔茨海默病(AD)的自动化工具。迄今为止开发的手工技术缺乏通用性,因此开发了可提取更多相关特征的深度学习(DL)技术。为了满足有限的标记数据集和对高计算能力的要求,可以采用迁移学习模型作为基准。近年来,大量研究人员致力于开发基于机器学习的技术,利用医学影像数据进行 AD 检测和分类。本调查报告全面回顾了现有文献中有关用于注意力缺失症检测和分类的各种方法和途径,重点关注结构性 MRI、PET 和 fMRI 等神经成像技术。本调查的主要目的是分析不同的迁移学习模型,这些模型可用于部署深度卷积神经网络,以进行注意力缺失症检测和分类。此外,还讨论了开发过程中涉及的各个阶段,即图像捕获、预处理、特征提取和选择,以揭示需要解决的不同阶段和挑战。这些研究视角可为开发注意力缺失检测和分类的自动化应用提供研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Alzheimer’s disease using pre-trained deep learning models through transfer learning: a review

Due to the progress in image processing and Artificial Intelligence (AI), it is now possible to develop automated tool for the early detection and diagnosis of Alzheimer’s Disease (AD). Handcrafted techniques developed so far, lack generality, leading to the development of deep learning (DL) techniques, which can extract more relevant features. To cater for the limited labelled datasets and requirement in terms of high computational power, transfer learning models can be adopted as a baseline. In recent years, considerable research efforts have been devoted to developing machine learning-based techniques for AD detection and classification using medical imaging data. This survey paper comprehensively reviews the existing literature on various methodologies and approaches employed for AD detection and classification, with a focus on neuroimaging techniques such as structural MRI, PET, and fMRI. The main objective of this survey is to analyse the different transfer learning models that can be used for the deployment of deep convolution neural network for AD detection and classification. The phases involved in the development namely image capture, pre-processing, feature extraction and selection are also discussed in the view of shedding light on the different phases and challenges that need to be addressed. The research perspectives may provide research directions on the development of automated applications for AD detection and classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Artificial Intelligence Review
Artificial Intelligence Review 工程技术-计算机:人工智能
CiteScore
22.00
自引率
3.30%
发文量
194
审稿时长
5.3 months
期刊介绍: Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.
期刊最新文献
Federated learning design and functional models: survey A systematic literature review of recent advances on context-aware recommender systems Escape: an optimization method based on crowd evacuation behaviors A multi-strategy boosted bald eagle search algorithm for global optimization and constrained engineering problems: case study on MLP classification problems Innovative solution suggestions for financing electric vehicle charging infrastructure investments with a novel artificial intelligence-based fuzzy decision-making modelling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1