{"title":"地震数据的盲谱反演","authors":"Yaoguang Sun, Siyuan Cao, Siyuan Chen, Yuxin Su","doi":"10.1111/1365-2478.13594","DOIUrl":null,"url":null,"abstract":"<p>Reflectivity inversion is a key step in reservoir prediction. Conventional sparse-spike deconvolution assumes that the reflectivity (reflection coefficient series) is sparse and solves for the reflection coefficients by an <i>L</i>1-norm inversion process. Spectral inversion is an alternative to sparse-spike deconvolution, which is based on the odd–even decomposition algorithm and can accurately identify thin layers and reduce the wavelet tuning effect without using constraints from logging data, from horizon interpretations or from an initial model of the reflectivity. In seismic processing, an error exists in wavelet extraction because of complex geological structures, resulting in the low accuracy of deconvolution and inversion. Blind deconvolution is an effective method for solving the problem mentioned above, which comprises seismic wavelet and reflectivity sequence, assuming that the wavelets that affect some subsets of the seismic data are approximately the same. Therefore, we combined blind deconvolution with spectral inversion to propose blind spectral inversion. Given an initial wavelet, we can calculate the reflectivity based on spectral inversion and update the wavelet for the next iteration. During the update processing, we add the smoothness of the wavelet amplitude spectrum as a regularization term, thus reducing the wavelet oscillation in the time domain, increasing the similarity between inverted and initial wavelets, and improving the stability of the solution. The blind spectral inversion method inherits the wavelet robustness of blind deconvolution and high resolution of spectral inversion, which is suitable for reflectivity inversion. Applications to synthetic and field seismic datasets demonstrate that the blind spectral inversion method can accurately calculate the reflectivity even when there is an error in wavelet extraction.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind spectral inversion of seismic data\",\"authors\":\"Yaoguang Sun, Siyuan Cao, Siyuan Chen, Yuxin Su\",\"doi\":\"10.1111/1365-2478.13594\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Reflectivity inversion is a key step in reservoir prediction. Conventional sparse-spike deconvolution assumes that the reflectivity (reflection coefficient series) is sparse and solves for the reflection coefficients by an <i>L</i>1-norm inversion process. Spectral inversion is an alternative to sparse-spike deconvolution, which is based on the odd–even decomposition algorithm and can accurately identify thin layers and reduce the wavelet tuning effect without using constraints from logging data, from horizon interpretations or from an initial model of the reflectivity. In seismic processing, an error exists in wavelet extraction because of complex geological structures, resulting in the low accuracy of deconvolution and inversion. Blind deconvolution is an effective method for solving the problem mentioned above, which comprises seismic wavelet and reflectivity sequence, assuming that the wavelets that affect some subsets of the seismic data are approximately the same. Therefore, we combined blind deconvolution with spectral inversion to propose blind spectral inversion. Given an initial wavelet, we can calculate the reflectivity based on spectral inversion and update the wavelet for the next iteration. During the update processing, we add the smoothness of the wavelet amplitude spectrum as a regularization term, thus reducing the wavelet oscillation in the time domain, increasing the similarity between inverted and initial wavelets, and improving the stability of the solution. The blind spectral inversion method inherits the wavelet robustness of blind deconvolution and high resolution of spectral inversion, which is suitable for reflectivity inversion. Applications to synthetic and field seismic datasets demonstrate that the blind spectral inversion method can accurately calculate the reflectivity even when there is an error in wavelet extraction.</p>\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13594\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.13594","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Reflectivity inversion is a key step in reservoir prediction. Conventional sparse-spike deconvolution assumes that the reflectivity (reflection coefficient series) is sparse and solves for the reflection coefficients by an L1-norm inversion process. Spectral inversion is an alternative to sparse-spike deconvolution, which is based on the odd–even decomposition algorithm and can accurately identify thin layers and reduce the wavelet tuning effect without using constraints from logging data, from horizon interpretations or from an initial model of the reflectivity. In seismic processing, an error exists in wavelet extraction because of complex geological structures, resulting in the low accuracy of deconvolution and inversion. Blind deconvolution is an effective method for solving the problem mentioned above, which comprises seismic wavelet and reflectivity sequence, assuming that the wavelets that affect some subsets of the seismic data are approximately the same. Therefore, we combined blind deconvolution with spectral inversion to propose blind spectral inversion. Given an initial wavelet, we can calculate the reflectivity based on spectral inversion and update the wavelet for the next iteration. During the update processing, we add the smoothness of the wavelet amplitude spectrum as a regularization term, thus reducing the wavelet oscillation in the time domain, increasing the similarity between inverted and initial wavelets, and improving the stability of the solution. The blind spectral inversion method inherits the wavelet robustness of blind deconvolution and high resolution of spectral inversion, which is suitable for reflectivity inversion. Applications to synthetic and field seismic datasets demonstrate that the blind spectral inversion method can accurately calculate the reflectivity even when there is an error in wavelet extraction.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.