包络归一化反射波形反演

IF 1.8 3区 地球科学 Q3 GEOCHEMISTRY & GEOPHYSICS Geophysical Prospecting Pub Date : 2024-09-03 DOI:10.1111/1365-2478.13598
Yilin Wang, Benxin Chi, Liangguo Dong
{"title":"包络归一化反射波形反演","authors":"Yilin Wang, Benxin Chi, Liangguo Dong","doi":"10.1111/1365-2478.13598","DOIUrl":null,"url":null,"abstract":"The reflection waveform inversion has the capability to reconstruct the background velocity model using only the reflection data by employing a migration/demigration process. Utilizing the waveform discrepancy to update the background velocity model, the conventional reflection waveform inversion method heavily relies on the true‐amplitude migration/demigration technique to reproduce the primary amplitude information from the observed reflections. We can reproduce the amplitude of observed reflections by performing least‐squares reverse time migration to estimate the reflectivity in each iteration. However, this strategy is quite time‐consuming. To avoid the need for the true‐amplitude migration/demigration or least‐squares reverse time migration, we develop an amplitude‐independent reflection waveform inversion method that uses an envelope‐normalized objective function. The envelope‐normalized waveform difference can extract the phase residuals accurately as a function of time. Compared with the global energy–normalized misfit, our proposed envelope‐normalized objective function is essentially a phase‐matched measurement. At the same time, due to the amplitude independence of our proposed objective function, the subsequent weak reflections contribute with a similar weight to the total value of the misfit as the strong early reflections do. This makes it possible to recover the deep subsurface velocity. Synthetic data of the Sigsbee model and marine streamer field data applications validate that our amplitude‐independent reflection waveform inversion method can further improve the resolution and accuracy by aligning the reflection events of synthetic and observed data phase to phase without the need to perform true‐amplitude migration/demigration or least‐squares reverse time migration as in conventional reflection waveform inversion.","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Envelope normalized reflection waveform inversion\",\"authors\":\"Yilin Wang, Benxin Chi, Liangguo Dong\",\"doi\":\"10.1111/1365-2478.13598\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reflection waveform inversion has the capability to reconstruct the background velocity model using only the reflection data by employing a migration/demigration process. Utilizing the waveform discrepancy to update the background velocity model, the conventional reflection waveform inversion method heavily relies on the true‐amplitude migration/demigration technique to reproduce the primary amplitude information from the observed reflections. We can reproduce the amplitude of observed reflections by performing least‐squares reverse time migration to estimate the reflectivity in each iteration. However, this strategy is quite time‐consuming. To avoid the need for the true‐amplitude migration/demigration or least‐squares reverse time migration, we develop an amplitude‐independent reflection waveform inversion method that uses an envelope‐normalized objective function. The envelope‐normalized waveform difference can extract the phase residuals accurately as a function of time. Compared with the global energy–normalized misfit, our proposed envelope‐normalized objective function is essentially a phase‐matched measurement. At the same time, due to the amplitude independence of our proposed objective function, the subsequent weak reflections contribute with a similar weight to the total value of the misfit as the strong early reflections do. This makes it possible to recover the deep subsurface velocity. Synthetic data of the Sigsbee model and marine streamer field data applications validate that our amplitude‐independent reflection waveform inversion method can further improve the resolution and accuracy by aligning the reflection events of synthetic and observed data phase to phase without the need to perform true‐amplitude migration/demigration or least‐squares reverse time migration as in conventional reflection waveform inversion.\",\"PeriodicalId\":12793,\"journal\":{\"name\":\"Geophysical Prospecting\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Prospecting\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1111/1365-2478.13598\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1111/1365-2478.13598","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

反射波形反演法能够通过采用迁移/解迁移过程,仅利用反射数据重建背景速度模型。利用波形差异更新背景速度模型,传统的反射波形反演方法在很大程度上依赖于真实振幅迁移/反演技术来重现观测到的反射波的主要振幅信息。我们可以在每次迭代中通过最小二乘反向时间迁移来估计反射率,从而再现观测到的反射波的振幅。然而,这种策略相当耗时。为了避免真振幅迁移/去迁移或最小二乘反向时间迁移,我们开发了一种与振幅无关的反射波形反演方法,该方法使用包络归一化目标函数。包络归一化波形差值可以精确提取随时间变化的相位残差。与全局能量归一化失配相比,我们提出的包络归一化目标函数本质上是一种相位匹配测量。同时,由于我们提出的目标函数与振幅无关,后续的弱反射与早期的强反射对失配总值的贡献权重相似。这使得恢复深层地下速度成为可能。Sigsbee 模型的合成数据和海洋流场数据的应用验证了我们与振幅无关的反射波形反演方法可以进一步提高分辨率和精度,它可以将合成数据和观测数据的反射事件相位对齐,而无需像传统反射波形反演那样进行真振幅迁移/解迁移或最小二乘反向时间迁移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Envelope normalized reflection waveform inversion
The reflection waveform inversion has the capability to reconstruct the background velocity model using only the reflection data by employing a migration/demigration process. Utilizing the waveform discrepancy to update the background velocity model, the conventional reflection waveform inversion method heavily relies on the true‐amplitude migration/demigration technique to reproduce the primary amplitude information from the observed reflections. We can reproduce the amplitude of observed reflections by performing least‐squares reverse time migration to estimate the reflectivity in each iteration. However, this strategy is quite time‐consuming. To avoid the need for the true‐amplitude migration/demigration or least‐squares reverse time migration, we develop an amplitude‐independent reflection waveform inversion method that uses an envelope‐normalized objective function. The envelope‐normalized waveform difference can extract the phase residuals accurately as a function of time. Compared with the global energy–normalized misfit, our proposed envelope‐normalized objective function is essentially a phase‐matched measurement. At the same time, due to the amplitude independence of our proposed objective function, the subsequent weak reflections contribute with a similar weight to the total value of the misfit as the strong early reflections do. This makes it possible to recover the deep subsurface velocity. Synthetic data of the Sigsbee model and marine streamer field data applications validate that our amplitude‐independent reflection waveform inversion method can further improve the resolution and accuracy by aligning the reflection events of synthetic and observed data phase to phase without the need to perform true‐amplitude migration/demigration or least‐squares reverse time migration as in conventional reflection waveform inversion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geophysical Prospecting
Geophysical Prospecting 地学-地球化学与地球物理
CiteScore
4.90
自引率
11.50%
发文量
118
审稿时长
4.5 months
期刊介绍: Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.
期刊最新文献
Issue Information Simultaneous inversion of four physical parameters of hydrate reservoir for high accuracy porosity estimation A mollifier approach to seismic data representation Analytic solutions for effective elastic moduli of isotropic solids containing oblate spheroid pores with critical porosity An efficient pseudoelastic pure P-mode wave equation and the implementation of the free surface boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1