利用前馈神经网络对带有控制参数的非线性动态系统进行机器学习

Hidetsugu Sakaguchi
{"title":"利用前馈神经网络对带有控制参数的非线性动态系统进行机器学习","authors":"Hidetsugu Sakaguchi","doi":"arxiv-2409.07468","DOIUrl":null,"url":null,"abstract":"Several authors have reported that the echo state network reproduces\nbifurcation diagrams of some nonlinear differential equations using the data\nfor a few control parameters. We demonstrate that a simpler feedforward neural\nnetwork can also reproduce the bifurcation diagram of the logistics map and\nsynchronization transition in globally coupled Stuart-Landau equations.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning of Nonlinear Dynamical Systems with Control Parameters Using Feedforward Neural Networks\",\"authors\":\"Hidetsugu Sakaguchi\",\"doi\":\"arxiv-2409.07468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Several authors have reported that the echo state network reproduces\\nbifurcation diagrams of some nonlinear differential equations using the data\\nfor a few control parameters. We demonstrate that a simpler feedforward neural\\nnetwork can also reproduce the bifurcation diagram of the logistics map and\\nsynchronization transition in globally coupled Stuart-Landau equations.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.07468\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.07468","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

有几位学者报告说,回声状态网络利用几个控制参数的数据再现了一些非线性微分方程的分岔图。我们证明,一个更简单的前馈神经网络也能重现全局耦合斯图尔特-朗道方程中物流图和同步转换的分岔图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine Learning of Nonlinear Dynamical Systems with Control Parameters Using Feedforward Neural Networks
Several authors have reported that the echo state network reproduces bifurcation diagrams of some nonlinear differential equations using the data for a few control parameters. We demonstrate that a simpler feedforward neural network can also reproduce the bifurcation diagram of the logistics map and synchronization transition in globally coupled Stuart-Landau equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tunneling Time for Walking Droplets on an Oscillating Liquid Surface Rydberg excitons in cuprous oxide: A two-particle system with classical chaos Disruption of exo-asteroids around white dwarfs and the release of dust particles in debris rings in co-orbital motion Machine-aided guessing and gluing of unstable periodic orbits Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1