内皮衍生的分泌型长非编码 RNA Gadlor1 和 Gadlor2 会加重心脏重塑

IF 6.5 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Molecular Therapy. Nucleic Acids Pub Date : 2024-08-15 DOI:10.1016/j.omtn.2024.102306
Merve Keles, Steve Grein, Natali Froese, Dagmar Wirth, Felix A. Trogisch, Rhys Wardman, Shruthi Hemanna, Nina Weinzierl, Philipp-Sebastian Koch, Stefanie Uhlig, Santosh Lomada, Gesine M. Dittrich, Malgorzata Szaroszyk, Ricarda Haustein, Jan Hegermann, Abel Martin-Garrido, Johann Bauersachs, Derk Frank, Norbert Frey, Karen Bieback, Julio Cordero, Gergana Dobreva, Thomas Wieland, Joerg Heineke
{"title":"内皮衍生的分泌型长非编码 RNA Gadlor1 和 Gadlor2 会加重心脏重塑","authors":"Merve Keles, Steve Grein, Natali Froese, Dagmar Wirth, Felix A. Trogisch, Rhys Wardman, Shruthi Hemanna, Nina Weinzierl, Philipp-Sebastian Koch, Stefanie Uhlig, Santosh Lomada, Gesine M. Dittrich, Malgorzata Szaroszyk, Ricarda Haustein, Jan Hegermann, Abel Martin-Garrido, Johann Bauersachs, Derk Frank, Norbert Frey, Karen Bieback, Julio Cordero, Gergana Dobreva, Thomas Wieland, Joerg Heineke","doi":"10.1016/j.omtn.2024.102306","DOIUrl":null,"url":null,"abstract":"Pathological cardiac remodeling predisposes individuals to developing heart failure. Here, we investigated two co-regulated long non-coding RNAs (lncRNAs), termed and , which are upregulated in failing hearts of patients and mice. Cardiac overexpression of and aggravated myocardial dysfunction and enhanced hypertrophic and fibrotic remodeling in mice exposed to pressure overload. Compound knockout (KO) mice showed markedly reduced myocardial hypertrophy, fibrosis, and dysfunction, while exhibiting increased angiogenesis during short and prolonged periods of pressure overload. Paradoxically, KO mice suffered from sudden death during prolonged overload, possibly due to cardiac arrhythmia. and , which are mainly expressed in endothelial cells (ECs) in the heart, where they inhibit pro-angiogenic gene expression, are strongly secreted within extracellular vesicles (EVs). These EVs transfer lncRNAs to cardiomyocytes, where they bind and activate calmodulin-dependent kinase II, and impact pro-hypertrophic gene expression and calcium homeostasis. Therefore, we reveal a crucial lncRNA-based mechanism of EC-cardiomyocyte crosstalk during heart failure, which could be specifically modified in the future for therapeutic purposes.","PeriodicalId":18821,"journal":{"name":"Molecular Therapy. Nucleic Acids","volume":"6 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Endothelial derived, secreted long non-coding RNAs Gadlor1 and Gadlor2 aggravate cardiac remodeling\",\"authors\":\"Merve Keles, Steve Grein, Natali Froese, Dagmar Wirth, Felix A. Trogisch, Rhys Wardman, Shruthi Hemanna, Nina Weinzierl, Philipp-Sebastian Koch, Stefanie Uhlig, Santosh Lomada, Gesine M. Dittrich, Malgorzata Szaroszyk, Ricarda Haustein, Jan Hegermann, Abel Martin-Garrido, Johann Bauersachs, Derk Frank, Norbert Frey, Karen Bieback, Julio Cordero, Gergana Dobreva, Thomas Wieland, Joerg Heineke\",\"doi\":\"10.1016/j.omtn.2024.102306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pathological cardiac remodeling predisposes individuals to developing heart failure. Here, we investigated two co-regulated long non-coding RNAs (lncRNAs), termed and , which are upregulated in failing hearts of patients and mice. Cardiac overexpression of and aggravated myocardial dysfunction and enhanced hypertrophic and fibrotic remodeling in mice exposed to pressure overload. Compound knockout (KO) mice showed markedly reduced myocardial hypertrophy, fibrosis, and dysfunction, while exhibiting increased angiogenesis during short and prolonged periods of pressure overload. Paradoxically, KO mice suffered from sudden death during prolonged overload, possibly due to cardiac arrhythmia. and , which are mainly expressed in endothelial cells (ECs) in the heart, where they inhibit pro-angiogenic gene expression, are strongly secreted within extracellular vesicles (EVs). These EVs transfer lncRNAs to cardiomyocytes, where they bind and activate calmodulin-dependent kinase II, and impact pro-hypertrophic gene expression and calcium homeostasis. Therefore, we reveal a crucial lncRNA-based mechanism of EC-cardiomyocyte crosstalk during heart failure, which could be specifically modified in the future for therapeutic purposes.\",\"PeriodicalId\":18821,\"journal\":{\"name\":\"Molecular Therapy. Nucleic Acids\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Therapy. Nucleic Acids\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.omtn.2024.102306\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Therapy. Nucleic Acids","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.omtn.2024.102306","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

病理性心脏重塑易导致心力衰竭。在这里,我们研究了两种共同调控的长非编码 RNA(lncRNA),分别称为和,它们在患者和小鼠衰竭心脏中上调。在压力过载的小鼠体内,心脏过量表达和加重了心肌功能障碍,并增强了肥厚性和纤维性重塑。复合基因敲除(KO)小鼠的心肌肥厚、纤维化和功能障碍明显减轻,同时在短期和长期压力过载期间表现出血管生成增加。主要在心脏内皮细胞(ECs)中表达的lncRNA和Ⅳ抑制促血管生成基因的表达,它们在细胞外囊泡(EVs)中强烈分泌。这些EVs将lncRNA转移到心肌细胞中,在那里它们与钙调素依赖性激酶II结合并激活钙调素依赖性激酶II,影响促肥大基因的表达和钙稳态。因此,我们揭示了心力衰竭过程中心电图-心肌细胞串联的一种基于lncRNA的关键机制,未来可对其进行特异性改造以达到治疗目的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Endothelial derived, secreted long non-coding RNAs Gadlor1 and Gadlor2 aggravate cardiac remodeling
Pathological cardiac remodeling predisposes individuals to developing heart failure. Here, we investigated two co-regulated long non-coding RNAs (lncRNAs), termed and , which are upregulated in failing hearts of patients and mice. Cardiac overexpression of and aggravated myocardial dysfunction and enhanced hypertrophic and fibrotic remodeling in mice exposed to pressure overload. Compound knockout (KO) mice showed markedly reduced myocardial hypertrophy, fibrosis, and dysfunction, while exhibiting increased angiogenesis during short and prolonged periods of pressure overload. Paradoxically, KO mice suffered from sudden death during prolonged overload, possibly due to cardiac arrhythmia. and , which are mainly expressed in endothelial cells (ECs) in the heart, where they inhibit pro-angiogenic gene expression, are strongly secreted within extracellular vesicles (EVs). These EVs transfer lncRNAs to cardiomyocytes, where they bind and activate calmodulin-dependent kinase II, and impact pro-hypertrophic gene expression and calcium homeostasis. Therefore, we reveal a crucial lncRNA-based mechanism of EC-cardiomyocyte crosstalk during heart failure, which could be specifically modified in the future for therapeutic purposes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Therapy. Nucleic Acids
Molecular Therapy. Nucleic Acids MEDICINE, RESEARCH & EXPERIMENTAL-
CiteScore
15.40
自引率
1.10%
发文量
336
审稿时长
20 weeks
期刊介绍: Molecular Therapy Nucleic Acids is an international, open-access journal that publishes high-quality research in nucleic-acid-based therapeutics to treat and correct genetic and acquired diseases. It is the official journal of the American Society of Gene & Cell Therapy and is built upon the success of Molecular Therapy. The journal focuses on gene- and oligonucleotide-based therapies and publishes peer-reviewed research, reviews, and commentaries. Its impact factor for 2022 is 8.8. The subject areas covered include the development of therapeutics based on nucleic acids and their derivatives, vector development for RNA-based therapeutics delivery, utilization of gene-modifying agents like Zn finger nucleases and triplex-forming oligonucleotides, pre-clinical target validation, safety and efficacy studies, and clinical trials.
期刊最新文献
Retraction Notice to: Promotion of tumor progression by exosome transmission of circular RNA circSKA3. siRNA tackles cancer: Immune checkpoint inhibitors and siRNA combinations. miR-125b differentially impacts mineralization in dexamethasone and calcium-treated human mesenchymal stem cells. Unleashing the TLR9-driven multilineage differentiation of myeloid leukemia cells in vivo. Extracellular viral microRNAs as biomarkers of virus infection in human cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1