{"title":"TinyCount:用于智能监控的高效人群计数网络","authors":"Hyeonbeen Lee, Jangho Lee","doi":"10.1007/s11554-024-01531-8","DOIUrl":null,"url":null,"abstract":"<p>Crowd counting, the task of estimating the total number of people in an image, is essential for intelligent surveillance. Integrating a well-trained crowd counting network into edge devices, such as intelligent CCTV systems, enables its application across various domains, including the prevention of crowd collapses and urban planning. For a model to be embedded in edge devices, it requires robust performance, reduced parameter count, and faster response times. This study proposes a lightweight and powerful model called TinyCount, which has only 60<i>k</i> parameters. The proposed TinyCount is a fully convolutional network consisting of a feature extract module (FEM) for robust and rapid feature extraction, a scale perception module (SPM) for scale variation perception and an upsampling module (UM) that adjusts the feature map to the same size as the original image. TinyCount demonstrated competitive performance across three representative crowd counting datasets, despite utilizing approximately 3.33 to 271 times fewer parameters than other crowd counting approaches. The proposed model achieved relatively fast inference times by leveraging the MobileNetV2 architecture with dilated and transposed convolutions. The application of SEblock and findings from existing studies further proved its effectiveness. Finally, we evaluated the proposed TinyCount on multiple edge devices, including the Raspberry Pi 4, NVIDIA Jetson Nano, and NVIDIA Jetson AGX Xavier, to demonstrate its potential for practical applications.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"9 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"TinyCount: an efficient crowd counting network for intelligent surveillance\",\"authors\":\"Hyeonbeen Lee, Jangho Lee\",\"doi\":\"10.1007/s11554-024-01531-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Crowd counting, the task of estimating the total number of people in an image, is essential for intelligent surveillance. Integrating a well-trained crowd counting network into edge devices, such as intelligent CCTV systems, enables its application across various domains, including the prevention of crowd collapses and urban planning. For a model to be embedded in edge devices, it requires robust performance, reduced parameter count, and faster response times. This study proposes a lightweight and powerful model called TinyCount, which has only 60<i>k</i> parameters. The proposed TinyCount is a fully convolutional network consisting of a feature extract module (FEM) for robust and rapid feature extraction, a scale perception module (SPM) for scale variation perception and an upsampling module (UM) that adjusts the feature map to the same size as the original image. TinyCount demonstrated competitive performance across three representative crowd counting datasets, despite utilizing approximately 3.33 to 271 times fewer parameters than other crowd counting approaches. The proposed model achieved relatively fast inference times by leveraging the MobileNetV2 architecture with dilated and transposed convolutions. The application of SEblock and findings from existing studies further proved its effectiveness. Finally, we evaluated the proposed TinyCount on multiple edge devices, including the Raspberry Pi 4, NVIDIA Jetson Nano, and NVIDIA Jetson AGX Xavier, to demonstrate its potential for practical applications.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01531-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01531-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
TinyCount: an efficient crowd counting network for intelligent surveillance
Crowd counting, the task of estimating the total number of people in an image, is essential for intelligent surveillance. Integrating a well-trained crowd counting network into edge devices, such as intelligent CCTV systems, enables its application across various domains, including the prevention of crowd collapses and urban planning. For a model to be embedded in edge devices, it requires robust performance, reduced parameter count, and faster response times. This study proposes a lightweight and powerful model called TinyCount, which has only 60k parameters. The proposed TinyCount is a fully convolutional network consisting of a feature extract module (FEM) for robust and rapid feature extraction, a scale perception module (SPM) for scale variation perception and an upsampling module (UM) that adjusts the feature map to the same size as the original image. TinyCount demonstrated competitive performance across three representative crowd counting datasets, despite utilizing approximately 3.33 to 271 times fewer parameters than other crowd counting approaches. The proposed model achieved relatively fast inference times by leveraging the MobileNetV2 architecture with dilated and transposed convolutions. The application of SEblock and findings from existing studies further proved its effectiveness. Finally, we evaluated the proposed TinyCount on multiple edge devices, including the Raspberry Pi 4, NVIDIA Jetson Nano, and NVIDIA Jetson AGX Xavier, to demonstrate its potential for practical applications.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.