{"title":"通过固态动态核偏振(DNP)-核磁共振分析聚合物结构","authors":"Shinji Tanaka","doi":"10.1038/s41428-024-00965-y","DOIUrl":null,"url":null,"abstract":"Solid-state NMR is one of the most powerful analytical methods for the structural characterization and dynamics of polymers. Owing to its intrinsically low signal sensitivity, however, analysis of trace chemical species supported on polymers remains challenging. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers.","PeriodicalId":20302,"journal":{"name":"Polymer Journal","volume":"57 1","pages":"25-32"},"PeriodicalIF":2.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural analysis of polymers via solid-state dynamic nuclear polarization (DNP)-NMR\",\"authors\":\"Shinji Tanaka\",\"doi\":\"10.1038/s41428-024-00965-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Solid-state NMR is one of the most powerful analytical methods for the structural characterization and dynamics of polymers. Owing to its intrinsically low signal sensitivity, however, analysis of trace chemical species supported on polymers remains challenging. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers.\",\"PeriodicalId\":20302,\"journal\":{\"name\":\"Polymer Journal\",\"volume\":\"57 1\",\"pages\":\"25-32\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Journal\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.nature.com/articles/s41428-024-00965-y\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Journal","FirstCategoryId":"92","ListUrlMain":"https://www.nature.com/articles/s41428-024-00965-y","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Structural analysis of polymers via solid-state dynamic nuclear polarization (DNP)-NMR
Solid-state NMR is one of the most powerful analytical methods for the structural characterization and dynamics of polymers. Owing to its intrinsically low signal sensitivity, however, analysis of trace chemical species supported on polymers remains challenging. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers. Solid-state NMR with dynamic nuclear polarization (DNP-NMR) has recently attracted attention as a highly sensitive NMR measurement method for analyzing polymers. We recently investigated DNP-NMR for insoluble polymers, particularly cross-linked polymers, engineering plastics, and polymer-supported catalysts, and achieved high NMR signal sensitivity at a routinely accessible level. In this focus review, we present case studies on DNP-NMR measurements for a wide range of polymers.
期刊介绍:
Polymer Journal promotes research from all aspects of polymer science from anywhere in the world and aims to provide an integrated platform for scientific communication that assists the advancement of polymer science and related fields. The journal publishes Original Articles, Notes, Short Communications and Reviews.
Subject areas and topics of particular interest within the journal''s scope include, but are not limited to, those listed below:
Polymer synthesis and reactions
Polymer structures
Physical properties of polymers
Polymer surface and interfaces
Functional polymers
Supramolecular polymers
Self-assembled materials
Biopolymers and bio-related polymer materials
Polymer engineering.