AnyMatch -- 利用小型语言模型进行高效的零点实体匹配

Zeyu Zhang, Paul Groth, Iacer Calixto, Sebastian Schelter
{"title":"AnyMatch -- 利用小型语言模型进行高效的零点实体匹配","authors":"Zeyu Zhang, Paul Groth, Iacer Calixto, Sebastian Schelter","doi":"arxiv-2409.04073","DOIUrl":null,"url":null,"abstract":"Entity matching (EM) is the problem of determining whether two records refer\nto same real-world entity, which is crucial in data integration, e.g., for\nproduct catalogs or address databases. A major drawback of many EM approaches\nis their dependence on labelled examples. We thus focus on the challenging\nsetting of zero-shot entity matching where no labelled examples are available\nfor an unseen target dataset. Recently, large language models (LLMs) have shown\npromising results for zero-shot EM, but their low throughput and high\ndeployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model\nfine-tuned in a transfer learning setup. We propose several novel data\nselection techniques to generate fine-tuning data for our model, e.g., by\nselecting difficult pairs to match via an AutoML filter, by generating\nadditional attribute-level examples, and by controlling label imbalance in the\ndata. We conduct an extensive evaluation of the prediction quality and deployment\ncost of our model, in a comparison to thirteen baselines on nine benchmark\ndatasets. We find that AnyMatch provides competitive prediction quality despite\nits small parameter size: it achieves the second-highest F1 score overall, and\noutperforms several other approaches that employ models with hundreds of\nbillions of parameters. Furthermore, our approach exhibits major cost benefits:\nthe average prediction quality of AnyMatch is within 4.4% of the\nstate-of-the-art method MatchGPT with the proprietary trillion-parameter model\nGPT-4, yet AnyMatch requires four orders of magnitude less parameters and\nincurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AnyMatch -- Efficient Zero-Shot Entity Matching with a Small Language Model\",\"authors\":\"Zeyu Zhang, Paul Groth, Iacer Calixto, Sebastian Schelter\",\"doi\":\"arxiv-2409.04073\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Entity matching (EM) is the problem of determining whether two records refer\\nto same real-world entity, which is crucial in data integration, e.g., for\\nproduct catalogs or address databases. A major drawback of many EM approaches\\nis their dependence on labelled examples. We thus focus on the challenging\\nsetting of zero-shot entity matching where no labelled examples are available\\nfor an unseen target dataset. Recently, large language models (LLMs) have shown\\npromising results for zero-shot EM, but their low throughput and high\\ndeployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model\\nfine-tuned in a transfer learning setup. We propose several novel data\\nselection techniques to generate fine-tuning data for our model, e.g., by\\nselecting difficult pairs to match via an AutoML filter, by generating\\nadditional attribute-level examples, and by controlling label imbalance in the\\ndata. We conduct an extensive evaluation of the prediction quality and deployment\\ncost of our model, in a comparison to thirteen baselines on nine benchmark\\ndatasets. We find that AnyMatch provides competitive prediction quality despite\\nits small parameter size: it achieves the second-highest F1 score overall, and\\noutperforms several other approaches that employ models with hundreds of\\nbillions of parameters. Furthermore, our approach exhibits major cost benefits:\\nthe average prediction quality of AnyMatch is within 4.4% of the\\nstate-of-the-art method MatchGPT with the proprietary trillion-parameter model\\nGPT-4, yet AnyMatch requires four orders of magnitude less parameters and\\nincurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04073\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

实体匹配(EM)是确定两条记录是否指向同一个现实世界实体的问题,这在数据集成(如产品目录或地址数据库)中至关重要。许多 EM 方法的一个主要缺点是依赖于标记示例。因此,我们将重点放在 "零镜头实体匹配 "这一具有挑战性的情境上,在这种情境中,没有标记过的示例可用于未见过的目标数据集。最近,大型语言模型(LLM)在零拍 EM 方面取得了令人满意的结果,但其低吞吐量和高部署成本限制了其适用性和可扩展性。我们利用在迁移学习设置中经过微调的小型语言模型 AnyMatch 重新探讨了零次 EM 问题。我们提出了几种新颖的数据选择技术来为我们的模型生成微调数据,例如,通过 AutoML 过滤器选择难以匹配的配对,生成附加属性级示例,以及控制数据中的标签不平衡。我们在九个基准数据集上与 13 个基线模型进行了比较,对我们模型的预测质量和部署成本进行了广泛评估。我们发现,尽管参数规模较小,AnyMatch 却能提供具有竞争力的预测质量:它获得了第二高的 F1 总分,并超越了其他几种采用千亿参数模型的方法。此外,我们的方法在成本方面也有很大的优势:AnyMatch 的平均预测质量与采用专有万亿参数模型 GPT-4 的最先进方法 MatchGPT 相比,相差不到 4.4%,但 AnyMatch 所需的参数数量却少了四个数量级,推理成本(以每千个代币美元计)也低了 3899 倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AnyMatch -- Efficient Zero-Shot Entity Matching with a Small Language Model
Entity matching (EM) is the problem of determining whether two records refer to same real-world entity, which is crucial in data integration, e.g., for product catalogs or address databases. A major drawback of many EM approaches is their dependence on labelled examples. We thus focus on the challenging setting of zero-shot entity matching where no labelled examples are available for an unseen target dataset. Recently, large language models (LLMs) have shown promising results for zero-shot EM, but their low throughput and high deployment cost limit their applicability and scalability. We revisit the zero-shot EM problem with AnyMatch, a small language model fine-tuned in a transfer learning setup. We propose several novel data selection techniques to generate fine-tuning data for our model, e.g., by selecting difficult pairs to match via an AutoML filter, by generating additional attribute-level examples, and by controlling label imbalance in the data. We conduct an extensive evaluation of the prediction quality and deployment cost of our model, in a comparison to thirteen baselines on nine benchmark datasets. We find that AnyMatch provides competitive prediction quality despite its small parameter size: it achieves the second-highest F1 score overall, and outperforms several other approaches that employ models with hundreds of billions of parameters. Furthermore, our approach exhibits major cost benefits: the average prediction quality of AnyMatch is within 4.4% of the state-of-the-art method MatchGPT with the proprietary trillion-parameter model GPT-4, yet AnyMatch requires four orders of magnitude less parameters and incurs a 3,899 times lower inference cost (in dollars per 1,000 tokens).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1