以树宽为参数的最小命中集枚举

Batya Kenig, Dan Shlomo Mizrahi
{"title":"以树宽为参数的最小命中集枚举","authors":"Batya Kenig, Dan Shlomo Mizrahi","doi":"arxiv-2408.15776","DOIUrl":null,"url":null,"abstract":"Enumerating the minimal hitting sets of a hypergraph is a problem which\narises in many data management applications that include constraint mining,\ndiscovering unique column combinations, and enumerating database repairs.\nPreviously, Eiter et al. showed that the minimal hitting sets of an $n$-vertex\nhypergraph, with treewidth $w$, can be enumerated with delay $O^*(n^{w})$\n(ignoring polynomial factors), with space requirements that scale with the\noutput size. We improve this to fixed-parameter-linear delay, following an FPT\npreprocessing phase. The memory consumption of our algorithm is exponential\nwith respect to the treewidth of the hypergraph.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enumeration of Minimal Hitting Sets Parameterized by Treewidth\",\"authors\":\"Batya Kenig, Dan Shlomo Mizrahi\",\"doi\":\"arxiv-2408.15776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Enumerating the minimal hitting sets of a hypergraph is a problem which\\narises in many data management applications that include constraint mining,\\ndiscovering unique column combinations, and enumerating database repairs.\\nPreviously, Eiter et al. showed that the minimal hitting sets of an $n$-vertex\\nhypergraph, with treewidth $w$, can be enumerated with delay $O^*(n^{w})$\\n(ignoring polynomial factors), with space requirements that scale with the\\noutput size. We improve this to fixed-parameter-linear delay, following an FPT\\npreprocessing phase. The memory consumption of our algorithm is exponential\\nwith respect to the treewidth of the hypergraph.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

枚举超图的最小命中集是一个在许多数据管理应用中都会出现的问题,这些应用包括约束挖掘、发现唯一列组合以及枚举数据库修复等。此前,Eiter 等人的研究表明,可以用 $O^*(n^{w})$(忽略多项式系数)的延迟枚举树宽为 $w$ 的 $n$ 顶点超图的最小命中集,其空间需求随输出大小而缩放。在 FPT 预处理阶段之后,我们将其改进为固定参数线性延迟。我们算法的内存消耗与超图的树宽呈指数关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enumeration of Minimal Hitting Sets Parameterized by Treewidth
Enumerating the minimal hitting sets of a hypergraph is a problem which arises in many data management applications that include constraint mining, discovering unique column combinations, and enumerating database repairs. Previously, Eiter et al. showed that the minimal hitting sets of an $n$-vertex hypergraph, with treewidth $w$, can be enumerated with delay $O^*(n^{w})$ (ignoring polynomial factors), with space requirements that scale with the output size. We improve this to fixed-parameter-linear delay, following an FPT preprocessing phase. The memory consumption of our algorithm is exponential with respect to the treewidth of the hypergraph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1