基于人工智能的 KATP 通道药物配体的发现和低温电子显微镜结构阐释

Assmaa Elsheikh, Camden M Driggers, Ha H. Truong, Zhongying Yang, John Allen, Niel Henriksen, Katarzyna Walczewska-Szewc, Show-Ling Shyng
{"title":"基于人工智能的 KATP 通道药物配体的发现和低温电子显微镜结构阐释","authors":"Assmaa Elsheikh, Camden M Driggers, Ha H. Truong, Zhongying Yang, John Allen, Niel Henriksen, Katarzyna Walczewska-Szewc, Show-Ling Shyng","doi":"10.1101/2024.09.05.611490","DOIUrl":null,"url":null,"abstract":"Pancreatic K<sub>ATP</sub> channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the K<sub>ATP</sub> channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used K<sub>ATP</sub> channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for K<sub>ATP</sub> trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of K<sub>ATP</sub> channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known K<sub>ATP</sub> pharmacochaperones bind. The structural knowledge provides a framework for discovering K<sub>ATP</sub> channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on K<sub>ATP</sub> channel trafficking mutations. Aekatperone reversibly inhibits K<sub>ATP</sub> channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of K<sub>ATP</sub> bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a K<sub>ATP</sub> pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by K<sub>ATP</sub> trafficking defects.","PeriodicalId":501147,"journal":{"name":"bioRxiv - Biochemistry","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AI-Based Discovery and CryoEM Structural Elucidation of a KATP Channel Pharmacochaperone\",\"authors\":\"Assmaa Elsheikh, Camden M Driggers, Ha H. Truong, Zhongying Yang, John Allen, Niel Henriksen, Katarzyna Walczewska-Szewc, Show-Ling Shyng\",\"doi\":\"10.1101/2024.09.05.611490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pancreatic K<sub>ATP</sub> channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the K<sub>ATP</sub> channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used K<sub>ATP</sub> channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for K<sub>ATP</sub> trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of K<sub>ATP</sub> channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known K<sub>ATP</sub> pharmacochaperones bind. The structural knowledge provides a framework for discovering K<sub>ATP</sub> channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on K<sub>ATP</sub> channel trafficking mutations. Aekatperone reversibly inhibits K<sub>ATP</sub> channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of K<sub>ATP</sub> bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a K<sub>ATP</sub> pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by K<sub>ATP</sub> trafficking defects.\",\"PeriodicalId\":501147,\"journal\":{\"name\":\"bioRxiv - Biochemistry\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"bioRxiv - Biochemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.05.611490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv - Biochemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.05.611490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

胰腺 KATP 通道贩运缺陷是先天性高胰岛素血症(CHI)病例对 KATP 通道开启剂地亚佐醇反应迟钝的原因,而地亚佐醇是治疗 CHI 的主要药物。目前临床上使用的 KATP 通道抑制剂已被证明可作为药效合剂发挥作用,并能恢复贩运突变体的表面表达;然而,它们对 KATP 通道贩运受损的先天性高胰岛素血症的治疗作用受到了高亲和性结合的阻碍,这限制了获救通道的功能恢复。最近利用低温电子显微镜(cryoEM)对 KATP 通道进行的结构研究揭示了一个杂交口袋,多个已知的 KATP 药合剂都与该口袋结合。这些结构知识为发现具有理想的可逆抑制作用的 KATP 通道药合剂提供了一个框架,从而使获救通道的功能得以恢复。通过使用基于人工智能的虚拟筛选技术 AtomNet 以及功能验证,我们发现了一种被称为 Aekatperone 的新型化合物,它对 KATP 通道贩运突变具有伴侣效应。Aekatperone 可逆地抑制 KATP 通道活性,其半最大抑制浓度 (IC50) 约为 9 μM。被 Aekatperone 拯救到细胞表面的突变通道在洗去化合物后显示出功能恢复。与已知的高亲和力抑制剂药合剂相比,与 Aekatperone 结合的 KATP 的冷冻电镜结构显示出不同的结合特征。我们的研究结果揭示了一种能使获救通道恢复功能的 KATP 药物配体,它有望成为治疗因 KATP 运输缺陷而导致的 CHI 的一种疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AI-Based Discovery and CryoEM Structural Elucidation of a KATP Channel Pharmacochaperone
Pancreatic KATP channel trafficking defects underlie congenital hyperinsulinism (CHI) cases unresponsive to the KATP channel opener diazoxide, the mainstay medical therapy for CHI. Current clinically used KATP channel inhibitors have been shown to act as pharmacochaperones and restore surface expression of trafficking mutants; however, their therapeutic utility for KATP trafficking impaired CHI is hindered by high-affinity binding, which limits functional recovery of rescued channels. Recent structural studies of KATP channels employing cryo-electron microscopy (cryoEM) have revealed a promiscuous pocket where several known KATP pharmacochaperones bind. The structural knowledge provides a framework for discovering KATP channel pharmacochaperones with desired reversible inhibitory effects to permit functional recovery of rescued channels. Using an AI-based virtual screening technology AtomNet followed by functional validation, we identified a novel compound, termed Aekatperone, which exhibits chaperoning effects on KATP channel trafficking mutations. Aekatperone reversibly inhibits KATP channel activity with a half-maximal inhibitory concentration (IC50) ~ 9 μM. Mutant channels rescued to the cell surface by Aekatperone showed functional recovery upon washout of the compound. CryoEM structure of KATP bound to Aekatperone revealed distinct binding features compared to known high affinity inhibitor pharmacochaperones. Our findings unveil a KATP pharmacochaperone enabling functional recovery of rescued channels as a promising therapeutic for CHI caused by KATP trafficking defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cytosolic CRISPR RNA for RNA-targeting CRISPR-Cas systems Molecular activity mediates the composition and assembly of dissolved organic matter in lake sediments Structural insights into terminal arabinosylation biosynthesis of the mycobacterial cell wall arabinan Mechanistic studies of mycobacterial glycolipid biosynthesis by the mannosyltransferase PimE Affinity tag free purification of SARS-Cov-2 N protein and its crystal structure in complex with ssDNA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1