Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li
{"title":"多无人机物联网设备数据采集的能源和时间权衡优化","authors":"Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li","doi":"10.1109/TNET.2024.3450489","DOIUrl":null,"url":null,"abstract":"In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5172-5187"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices\",\"authors\":\"Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li\",\"doi\":\"10.1109/TNET.2024.3450489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"5172-5187\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663288/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663288/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices
In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.
期刊介绍:
The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.