多无人机物联网设备数据采集的能源和时间权衡优化

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-09-02 DOI:10.1109/TNET.2024.3450489
Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li
{"title":"多无人机物联网设备数据采集的能源和时间权衡优化","authors":"Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li","doi":"10.1109/TNET.2024.3450489","DOIUrl":null,"url":null,"abstract":"In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"5172-5187"},"PeriodicalIF":3.0000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices\",\"authors\":\"Riheng Jia;Qiyong Fu;Zhonglong Zheng;Guanglin Zhang;Minglu Li\",\"doi\":\"10.1109/TNET.2024.3450489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"5172-5187\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663288/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663288/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Energy and Time Trade-Off Optimization for Multi-UAV Enabled Data Collection of IoT Devices
In this work, we study the problem of dispatching multiple unmanned aerial vehicles (UAVs) for data collection in internet of things (IoT), where each UAV departs from its start point, visits some IoT devices for data collection and returns to its destination point. Considering the UAV’s limited onboard energy and the time required to collect data from all IoT devices, it is essential to appropriately assign the data collection task for each UAV, such that none of the dispatched UAVs consumes excessive energy and the maximum task completion time among all UAVs is minimized. To optimize those two conflicting objectives, we focus on minimizing the maximum task completion time and the maximum energy consumption among all UAVs, by jointly designing the flight trajectory, hovering positions for data collection and flight speed of each UAV. We formulate this problem as a multi-objective optimization problem with the aim of obtaining a set of Pareto-optimal solutions in terms of time or energy dominance. Due to the NP-hardness and complexity of the formulated problem, we propose a multi-strategy multi-objective ant colony optimization algorithm (MSMOACO), which is developed based on a constrained ant colony optimization algorithm with a fitnessguided mutation strategy and an adaptive hovering strategy being delicately incorporated, to solve the problem. To accommodate the practical scenario, we also design a novel geometry-based collision avoidance strategy to reduce the possibility of collisions among UAVs. Extensive evaluations validate the effectiveness and superiority of the proposed MSMOACO, compared with previous approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1