权力即知识:无线网络中的分布式和吞吐量优化功率控制

IF 3 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE/ACM Transactions on Networking Pub Date : 2024-08-29 DOI:10.1109/TNET.2024.3444602
Ilai Bistritz;Nicholas Bambos
{"title":"权力即知识:无线网络中的分布式和吞吐量优化功率控制","authors":"Ilai Bistritz;Nicholas Bambos","doi":"10.1109/TNET.2024.3444602","DOIUrl":null,"url":null,"abstract":"Consider N devices that transmit packets for T time slots, where device n uses transmission power \n<inline-formula> <tex-math>$P_{n}\\left ({{t}}\\right)$ </tex-math></inline-formula>\n at time slot t. Independently at each time slot, a packet arrives at device n with probability \n<inline-formula> <tex-math>$\\lambda _{n}$ </tex-math></inline-formula>\n. The probability of successfully transmitting a packet \n<inline-formula> <tex-math>$\\mu _{n}\\left ({{\\boldsymbol {P}}}\\right)$ </tex-math></inline-formula>\n is a function of the transmission powers of all devices \n<inline-formula> <tex-math>$\\boldsymbol {P}$ </tex-math></inline-formula>\n and the channel gains \n<inline-formula> <tex-math>$\\left \\{{{ g_{m,n}}}\\right \\} $ </tex-math></inline-formula>\n between them. This function is unknown to the devices that only observe binary reward \n<inline-formula> <tex-math>$r_{n}\\left ({{\\boldsymbol {P}}}\\right)$ </tex-math></inline-formula>\n of whether the transmission was successful (ACK/NACK). All packets of device n that were not successfully transmitted yet at time slot t wait in a queue \n<inline-formula> <tex-math>$Q_{n}\\left ({{t}}\\right)$ </tex-math></inline-formula>\n. The centralized max-weight scheduling (MWS) can stabilize the queues for any feasible \n<inline-formula> <tex-math>$\\boldsymbol {\\lambda }$ </tex-math></inline-formula>\n (i.e., throughput optimality). However, MWS for power control is intractable even as a centralized algorithm, let alone in a distributed network. We design a distributed yet asymptotically throughput optimal power control for the wireless interference channel, which has long been recognized as a major challenge. Our main observation is that the interference \n<inline-formula> <tex-math>$I_{n}\\left ({{t}}\\right)=\\sum g_{m,n}^{2}P_{m}\\left ({{t}}\\right)$ </tex-math></inline-formula>\n can be leveraged to evaluate the weighted throughput if we add a short pilot signal with power \n<inline-formula> <tex-math>$P_{m}\\propto Q_{m}\\left ({{t}}\\right)r_{m}\\left ({{\\boldsymbol {P}}}\\right)$ </tex-math></inline-formula>\n after transmitting the data. Our algorithm requires no explicit communication between the devices and learns to approximate MWS, overcoming its intractable optimization and the unknown throughput functions. We prove that, for large T, our algorithm can achieve any feasible \n<inline-formula> <tex-math>$\\boldsymbol {\\lambda }$ </tex-math></inline-formula>\n. Numerical experiments show that our algorithm outperforms the state-of-the-art distributed power control, exhibiting better performance than our theoretical bounds.","PeriodicalId":13443,"journal":{"name":"IEEE/ACM Transactions on Networking","volume":"32 6","pages":"4722-4734"},"PeriodicalIF":3.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Power Is Knowledge: Distributed and Throughput Optimal Power Control in Wireless Networks\",\"authors\":\"Ilai Bistritz;Nicholas Bambos\",\"doi\":\"10.1109/TNET.2024.3444602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider N devices that transmit packets for T time slots, where device n uses transmission power \\n<inline-formula> <tex-math>$P_{n}\\\\left ({{t}}\\\\right)$ </tex-math></inline-formula>\\n at time slot t. Independently at each time slot, a packet arrives at device n with probability \\n<inline-formula> <tex-math>$\\\\lambda _{n}$ </tex-math></inline-formula>\\n. The probability of successfully transmitting a packet \\n<inline-formula> <tex-math>$\\\\mu _{n}\\\\left ({{\\\\boldsymbol {P}}}\\\\right)$ </tex-math></inline-formula>\\n is a function of the transmission powers of all devices \\n<inline-formula> <tex-math>$\\\\boldsymbol {P}$ </tex-math></inline-formula>\\n and the channel gains \\n<inline-formula> <tex-math>$\\\\left \\\\{{{ g_{m,n}}}\\\\right \\\\} $ </tex-math></inline-formula>\\n between them. This function is unknown to the devices that only observe binary reward \\n<inline-formula> <tex-math>$r_{n}\\\\left ({{\\\\boldsymbol {P}}}\\\\right)$ </tex-math></inline-formula>\\n of whether the transmission was successful (ACK/NACK). All packets of device n that were not successfully transmitted yet at time slot t wait in a queue \\n<inline-formula> <tex-math>$Q_{n}\\\\left ({{t}}\\\\right)$ </tex-math></inline-formula>\\n. The centralized max-weight scheduling (MWS) can stabilize the queues for any feasible \\n<inline-formula> <tex-math>$\\\\boldsymbol {\\\\lambda }$ </tex-math></inline-formula>\\n (i.e., throughput optimality). However, MWS for power control is intractable even as a centralized algorithm, let alone in a distributed network. We design a distributed yet asymptotically throughput optimal power control for the wireless interference channel, which has long been recognized as a major challenge. Our main observation is that the interference \\n<inline-formula> <tex-math>$I_{n}\\\\left ({{t}}\\\\right)=\\\\sum g_{m,n}^{2}P_{m}\\\\left ({{t}}\\\\right)$ </tex-math></inline-formula>\\n can be leveraged to evaluate the weighted throughput if we add a short pilot signal with power \\n<inline-formula> <tex-math>$P_{m}\\\\propto Q_{m}\\\\left ({{t}}\\\\right)r_{m}\\\\left ({{\\\\boldsymbol {P}}}\\\\right)$ </tex-math></inline-formula>\\n after transmitting the data. Our algorithm requires no explicit communication between the devices and learns to approximate MWS, overcoming its intractable optimization and the unknown throughput functions. We prove that, for large T, our algorithm can achieve any feasible \\n<inline-formula> <tex-math>$\\\\boldsymbol {\\\\lambda }$ </tex-math></inline-formula>\\n. Numerical experiments show that our algorithm outperforms the state-of-the-art distributed power control, exhibiting better performance than our theoretical bounds.\",\"PeriodicalId\":13443,\"journal\":{\"name\":\"IEEE/ACM Transactions on Networking\",\"volume\":\"32 6\",\"pages\":\"4722-4734\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/ACM Transactions on Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10659074/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/ACM Transactions on Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10659074/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Power Is Knowledge: Distributed and Throughput Optimal Power Control in Wireless Networks
Consider N devices that transmit packets for T time slots, where device n uses transmission power $P_{n}\left ({{t}}\right)$ at time slot t. Independently at each time slot, a packet arrives at device n with probability $\lambda _{n}$ . The probability of successfully transmitting a packet $\mu _{n}\left ({{\boldsymbol {P}}}\right)$ is a function of the transmission powers of all devices $\boldsymbol {P}$ and the channel gains $\left \{{{ g_{m,n}}}\right \} $ between them. This function is unknown to the devices that only observe binary reward $r_{n}\left ({{\boldsymbol {P}}}\right)$ of whether the transmission was successful (ACK/NACK). All packets of device n that were not successfully transmitted yet at time slot t wait in a queue $Q_{n}\left ({{t}}\right)$ . The centralized max-weight scheduling (MWS) can stabilize the queues for any feasible $\boldsymbol {\lambda }$ (i.e., throughput optimality). However, MWS for power control is intractable even as a centralized algorithm, let alone in a distributed network. We design a distributed yet asymptotically throughput optimal power control for the wireless interference channel, which has long been recognized as a major challenge. Our main observation is that the interference $I_{n}\left ({{t}}\right)=\sum g_{m,n}^{2}P_{m}\left ({{t}}\right)$ can be leveraged to evaluate the weighted throughput if we add a short pilot signal with power $P_{m}\propto Q_{m}\left ({{t}}\right)r_{m}\left ({{\boldsymbol {P}}}\right)$ after transmitting the data. Our algorithm requires no explicit communication between the devices and learns to approximate MWS, overcoming its intractable optimization and the unknown throughput functions. We prove that, for large T, our algorithm can achieve any feasible $\boldsymbol {\lambda }$ . Numerical experiments show that our algorithm outperforms the state-of-the-art distributed power control, exhibiting better performance than our theoretical bounds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE/ACM Transactions on Networking
IEEE/ACM Transactions on Networking 工程技术-电信学
CiteScore
8.20
自引率
5.40%
发文量
246
审稿时长
4-8 weeks
期刊介绍: The IEEE/ACM Transactions on Networking’s high-level objective is to publish high-quality, original research results derived from theoretical or experimental exploration of the area of communication/computer networking, covering all sorts of information transport networks over all sorts of physical layer technologies, both wireline (all kinds of guided media: e.g., copper, optical) and wireless (e.g., radio-frequency, acoustic (e.g., underwater), infra-red), or hybrids of these. The journal welcomes applied contributions reporting on novel experiences and experiments with actual systems.
期刊最新文献
Table of Contents IEEE/ACM Transactions on Networking Information for Authors IEEE/ACM Transactions on Networking Society Information IEEE/ACM Transactions on Networking Publication Information FPCA: Parasitic Coding Authentication for UAVs by FM Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1