固溶处理温度对超高氮不锈钢微观结构、机械性能和耐腐蚀性的影响

Wenbo Wang, Jiping Lu, Guodong Cui, Shiqi Zhou, Dazhi Chen, Chengsong Zhang
{"title":"固溶处理温度对超高氮不锈钢微观结构、机械性能和耐腐蚀性的影响","authors":"Wenbo Wang, Jiping Lu, Guodong Cui, Shiqi Zhou, Dazhi Chen, Chengsong Zhang","doi":"10.1007/s11661-024-07568-5","DOIUrl":null,"url":null,"abstract":"<p>Ultra-high nitrogen (N &gt; 3 wt pct) austenitic stainless steel has been prepared by powder metallurgy. However, a large amount of nitride (CrN) precipitation leads to a decrease in corrosion resistance. In order to further improve the comprehensive performance of ultra-high nitrogen austenitic stainless steel, high temperature solution treatment has been carried out in this work. The microstructure, mechanical properties, and corrosion resistance of samples treated by different solution temperatures were investigated through various characterization and testing methods. The results indicate that high temperature solution treatment can promote the decomposition and spheroidization of nitrides, improve the microstructural morphology and distribution uniformity, and significantly enhance corrosion resistance. Especially the solution treatment at 1200 °C achieved the optimal combination of mechanical properties and corrosion resistance. Based on the analysis of TEM and EBSD, this enhancement is attributed to the reduction in both the quantity and size of CrN precipitates following the solution treatment. Additionally, the interface between CrN and austenite becomes less distinct, accompanied by a more ordered atomic arrangement. And, an increase in the density of austenite dislocations and the proportion of small-angle grain boundaries is observed.</p>","PeriodicalId":18504,"journal":{"name":"Metallurgical and Materials Transactions A","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Solution Treatment Temperature on Microstructure, Mechanical Properties and Corrosion Resistance of Ultra-High Nitrogen Stainless Steel\",\"authors\":\"Wenbo Wang, Jiping Lu, Guodong Cui, Shiqi Zhou, Dazhi Chen, Chengsong Zhang\",\"doi\":\"10.1007/s11661-024-07568-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Ultra-high nitrogen (N &gt; 3 wt pct) austenitic stainless steel has been prepared by powder metallurgy. However, a large amount of nitride (CrN) precipitation leads to a decrease in corrosion resistance. In order to further improve the comprehensive performance of ultra-high nitrogen austenitic stainless steel, high temperature solution treatment has been carried out in this work. The microstructure, mechanical properties, and corrosion resistance of samples treated by different solution temperatures were investigated through various characterization and testing methods. The results indicate that high temperature solution treatment can promote the decomposition and spheroidization of nitrides, improve the microstructural morphology and distribution uniformity, and significantly enhance corrosion resistance. Especially the solution treatment at 1200 °C achieved the optimal combination of mechanical properties and corrosion resistance. Based on the analysis of TEM and EBSD, this enhancement is attributed to the reduction in both the quantity and size of CrN precipitates following the solution treatment. Additionally, the interface between CrN and austenite becomes less distinct, accompanied by a more ordered atomic arrangement. And, an increase in the density of austenite dislocations and the proportion of small-angle grain boundaries is observed.</p>\",\"PeriodicalId\":18504,\"journal\":{\"name\":\"Metallurgical and Materials Transactions A\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metallurgical and Materials Transactions A\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s11661-024-07568-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metallurgical and Materials Transactions A","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s11661-024-07568-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

超高氮(N > 3 wt pct)奥氏体不锈钢是通过粉末冶金法制备的。然而,大量氮化物(CrN)析出会导致耐腐蚀性能下降。为了进一步提高超高氮奥氏体不锈钢的综合性能,本研究对其进行了高温固溶处理。通过各种表征和测试方法研究了不同固溶处理温度下样品的微观结构、机械性能和耐腐蚀性能。结果表明,高温固溶处理能促进氮化物的分解和球化,改善微观结构形态和分布均匀性,显著提高耐腐蚀性能。尤其是在 1200 ℃ 下进行的固溶处理实现了机械性能和耐腐蚀性能的最佳结合。根据 TEM 和 EBSD 分析,这种提高归因于固溶处理后 CrN 沉淀数量和尺寸的减少。此外,CrN 和奥氏体之间的界面变得不那么明显,同时原子排列更加有序。此外,还观察到奥氏体位错密度和小角度晶界比例的增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Solution Treatment Temperature on Microstructure, Mechanical Properties and Corrosion Resistance of Ultra-High Nitrogen Stainless Steel

Ultra-high nitrogen (N > 3 wt pct) austenitic stainless steel has been prepared by powder metallurgy. However, a large amount of nitride (CrN) precipitation leads to a decrease in corrosion resistance. In order to further improve the comprehensive performance of ultra-high nitrogen austenitic stainless steel, high temperature solution treatment has been carried out in this work. The microstructure, mechanical properties, and corrosion resistance of samples treated by different solution temperatures were investigated through various characterization and testing methods. The results indicate that high temperature solution treatment can promote the decomposition and spheroidization of nitrides, improve the microstructural morphology and distribution uniformity, and significantly enhance corrosion resistance. Especially the solution treatment at 1200 °C achieved the optimal combination of mechanical properties and corrosion resistance. Based on the analysis of TEM and EBSD, this enhancement is attributed to the reduction in both the quantity and size of CrN precipitates following the solution treatment. Additionally, the interface between CrN and austenite becomes less distinct, accompanied by a more ordered atomic arrangement. And, an increase in the density of austenite dislocations and the proportion of small-angle grain boundaries is observed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Grain Refining and Cracking During Solidification Dendrite Growth in Single-Grain and Cyclic-Twinned Sn–3Ag–0.5Cu Solder Joints Remarkable Cryogenic Strength and Ductility of AISI 904L Superaustenitic Stainless Steel: A Comparative Study Eutectic Solidification Morphologies in Rapidly Solidified Hypereutectic Sn–Ag Solder Alloy The Effect of Silicon Substitution by Boron for the α-Nb5Si3: INSIGHTS into the Constitutive Properties of Nb5Si2B Through Theory and Experimental Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1