基于 SC-YOLO 框架的睾丸组织病理学自动分类方法。

IF 2.2 4区 工程技术 Q3 BIOCHEMICAL RESEARCH METHODS BioTechniques Pub Date : 2024-09-12 DOI:10.1080/07366205.2024.2393544
Jinggen Wu,Yao Sun,Yangbo Jiang,Yangcheng Bu,Chong Chen,Jingping Li,Lejun Li,Weikang Chen,Keren Cheng,Jian Xu
{"title":"基于 SC-YOLO 框架的睾丸组织病理学自动分类方法。","authors":"Jinggen Wu,Yao Sun,Yangbo Jiang,Yangcheng Bu,Chong Chen,Jingping Li,Lejun Li,Weikang Chen,Keren Cheng,Jian Xu","doi":"10.1080/07366205.2024.2393544","DOIUrl":null,"url":null,"abstract":"The pathological diagnosis and treatment of azoospermia depend on precise identification of spermatogenic cells. Traditional methods are time-consuming and highly subjective due to complexity of Johnsen score, posing challenges for accurately diagnosing azoospermia. Here, we introduce a novel SC-YOLO framework for automating the classification of spermatogenic cells that integrates S3Ghost module, CoordAtt module and DCNv2 module, effectively capturing texture and shape features of spermatogenic cells while reducing model parameters. Furthermore, we propose a simplified Johnsen score criteria to expedite the diagnostic process. Our SC-YOLO framework presents the higher efficiency and accuracy of deep learning technology in spermatogenic cell recognition. Future research endeavors will focus on optimizing the model's performance and exploring its potential for clinical applications.","PeriodicalId":8945,"journal":{"name":"BioTechniques","volume":"8 1","pages":"1-10"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An automatic classification method of testicular histopathology based on SC-YOLO framework.\",\"authors\":\"Jinggen Wu,Yao Sun,Yangbo Jiang,Yangcheng Bu,Chong Chen,Jingping Li,Lejun Li,Weikang Chen,Keren Cheng,Jian Xu\",\"doi\":\"10.1080/07366205.2024.2393544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The pathological diagnosis and treatment of azoospermia depend on precise identification of spermatogenic cells. Traditional methods are time-consuming and highly subjective due to complexity of Johnsen score, posing challenges for accurately diagnosing azoospermia. Here, we introduce a novel SC-YOLO framework for automating the classification of spermatogenic cells that integrates S3Ghost module, CoordAtt module and DCNv2 module, effectively capturing texture and shape features of spermatogenic cells while reducing model parameters. Furthermore, we propose a simplified Johnsen score criteria to expedite the diagnostic process. Our SC-YOLO framework presents the higher efficiency and accuracy of deep learning technology in spermatogenic cell recognition. Future research endeavors will focus on optimizing the model's performance and exploring its potential for clinical applications.\",\"PeriodicalId\":8945,\"journal\":{\"name\":\"BioTechniques\",\"volume\":\"8 1\",\"pages\":\"1-10\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioTechniques\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/07366205.2024.2393544\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioTechniques","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/07366205.2024.2393544","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

无精子症的病理诊断和治疗取决于对生精细胞的精确鉴定。传统方法耗时长,而且由于约翰森评分的复杂性,主观性很强,给无精子症的准确诊断带来了挑战。在此,我们介绍了一种用于自动分类生精细胞的新型 SC-YOLO 框架,该框架集成了 S3Ghost 模块、CoordAtt 模块和 DCNv2 模块,可有效捕捉生精细胞的纹理和形状特征,同时减少模型参数。此外,我们还提出了简化的约翰森评分标准,以加快诊断过程。我们的 SC-YOLO 框架展示了深度学习技术在生精细胞识别中的更高效率和准确性。未来的研究工作将侧重于优化模型的性能,并探索其在临床应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An automatic classification method of testicular histopathology based on SC-YOLO framework.
The pathological diagnosis and treatment of azoospermia depend on precise identification of spermatogenic cells. Traditional methods are time-consuming and highly subjective due to complexity of Johnsen score, posing challenges for accurately diagnosing azoospermia. Here, we introduce a novel SC-YOLO framework for automating the classification of spermatogenic cells that integrates S3Ghost module, CoordAtt module and DCNv2 module, effectively capturing texture and shape features of spermatogenic cells while reducing model parameters. Furthermore, we propose a simplified Johnsen score criteria to expedite the diagnostic process. Our SC-YOLO framework presents the higher efficiency and accuracy of deep learning technology in spermatogenic cell recognition. Future research endeavors will focus on optimizing the model's performance and exploring its potential for clinical applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BioTechniques
BioTechniques 工程技术-生化研究方法
CiteScore
4.40
自引率
0.00%
发文量
68
审稿时长
3.3 months
期刊介绍: BioTechniques is a peer-reviewed, open-access journal dedicated to publishing original laboratory methods, related technical and software tools, and methods-oriented review articles that are of broad interest to professional life scientists, as well as to scientists from other disciplines (e.g., chemistry, physics, computer science, plant and agricultural science and climate science) interested in life science applications for their technologies. Since 1983, BioTechniques has been a leading peer-reviewed journal for methods-related research. The journal considers: Reports describing innovative new methods, platforms and software, substantive modifications to existing methods, or innovative applications of existing methods, techniques & tools to new models or scientific questions Descriptions of technical tools that facilitate the design or performance of experiments or data analysis, such as software and simple laboratory devices Surveys of technical approaches related to broad fields of research Reviews discussing advancements in techniques and methods related to broad fields of research Letters to the Editor and Expert Opinions highlighting interesting observations or cautionary tales concerning experimental design, methodology or analysis.
期刊最新文献
A single-cell 3D dynamic volume control system for chondrocytes. A HABA dye-based colorimetric assay to detect unoccupied biotin binding sites in an avidin-containing fusion protein. Comparison of commercially available DNA and RNA extraction kits for wildlife feces collected from the environment. Sampling and analysis methods of air-borne microorganisms in hospital air: a review. An automatic classification method of testicular histopathology based on SC-YOLO framework.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1