{"title":"聚酰胺 6 熔体中端基诱导缩聚和环化的特征和竞争机制","authors":"Kefan Chen, Yongjun Wang, Liangliang Zhou, Junming Dai, Wenxing Chen, Wangyang Lu","doi":"10.1002/pol.20240463","DOIUrl":null,"url":null,"abstract":"<p>Polycondensation and ring-formation reactions are the main factors that cause instability in the molecular structure of commercial polyamide 6 (PA6) during melting. In this study, the mechanisms and interactions of the ring-formation and polycondensation reactions induced by various factors were thoroughly investigated. The findings suggest that the average molecular weight of PA6 increased by 20.4% during melting. The total monomer and oligomer content increased by 79.2%, and the ring-forming reaction was promoted with an increase in temperature. Moreover, a high concentration of the end-amino in PA6 promoted the ring-forming reaction, whereas similar concentrations of the end-amino and end-carboxyl groups were more conducive to the polycondensation reaction. In short, the nitrogen atoms in the end-amino group on the PA6 molecular chain attack the carbonyl carbon at different sites, including the carbonyl carbon in the amide bond and the carbonyl carbon in the end-carboxyl group, which is the key to the strength of the ring-formation and polycondensation reactions.</p>","PeriodicalId":16888,"journal":{"name":"Journal of Polymer Science","volume":"62 22","pages":"5019-5029"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characteristics and competitive mechanisms of polycondensation and cyclization induced by end-groups in polyamide 6 melt\",\"authors\":\"Kefan Chen, Yongjun Wang, Liangliang Zhou, Junming Dai, Wenxing Chen, Wangyang Lu\",\"doi\":\"10.1002/pol.20240463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Polycondensation and ring-formation reactions are the main factors that cause instability in the molecular structure of commercial polyamide 6 (PA6) during melting. In this study, the mechanisms and interactions of the ring-formation and polycondensation reactions induced by various factors were thoroughly investigated. The findings suggest that the average molecular weight of PA6 increased by 20.4% during melting. The total monomer and oligomer content increased by 79.2%, and the ring-forming reaction was promoted with an increase in temperature. Moreover, a high concentration of the end-amino in PA6 promoted the ring-forming reaction, whereas similar concentrations of the end-amino and end-carboxyl groups were more conducive to the polycondensation reaction. In short, the nitrogen atoms in the end-amino group on the PA6 molecular chain attack the carbonyl carbon at different sites, including the carbonyl carbon in the amide bond and the carbonyl carbon in the end-carboxyl group, which is the key to the strength of the ring-formation and polycondensation reactions.</p>\",\"PeriodicalId\":16888,\"journal\":{\"name\":\"Journal of Polymer Science\",\"volume\":\"62 22\",\"pages\":\"5019-5029\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240463\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pol.20240463","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Characteristics and competitive mechanisms of polycondensation and cyclization induced by end-groups in polyamide 6 melt
Polycondensation and ring-formation reactions are the main factors that cause instability in the molecular structure of commercial polyamide 6 (PA6) during melting. In this study, the mechanisms and interactions of the ring-formation and polycondensation reactions induced by various factors were thoroughly investigated. The findings suggest that the average molecular weight of PA6 increased by 20.4% during melting. The total monomer and oligomer content increased by 79.2%, and the ring-forming reaction was promoted with an increase in temperature. Moreover, a high concentration of the end-amino in PA6 promoted the ring-forming reaction, whereas similar concentrations of the end-amino and end-carboxyl groups were more conducive to the polycondensation reaction. In short, the nitrogen atoms in the end-amino group on the PA6 molecular chain attack the carbonyl carbon at different sites, including the carbonyl carbon in the amide bond and the carbonyl carbon in the end-carboxyl group, which is the key to the strength of the ring-formation and polycondensation reactions.
期刊介绍:
Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology.
As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology.