ASPEN:基于 ASP 的集体实体解决系统

Zhiliang Xiang, Meghyn Bienvenu, Gianluca Cima, Víctor Gutiérrez-Basulto, Yazmín Ibáñez-García
{"title":"ASPEN:基于 ASP 的集体实体解决系统","authors":"Zhiliang Xiang, Meghyn Bienvenu, Gianluca Cima, Víctor Gutiérrez-Basulto, Yazmín Ibáñez-García","doi":"arxiv-2408.06961","DOIUrl":null,"url":null,"abstract":"In this paper, we present ASPEN, an answer set programming (ASP)\nimplementation of a recently proposed declarative framework for collective\nentity resolution (ER). While an ASP encoding had been previously suggested,\nseveral practical issues had been neglected, most notably, the question of how\nto efficiently compute the (externally defined) similarity facts that are used\nin rule bodies. This leads us to propose new variants of the encodings\n(including Datalog approximations) and show how to employ different\nfunctionalities of ASP solvers to compute (maximal) solutions, and\n(approximations of) the sets of possible and certain merges. A comprehensive\nexperimental evaluation of ASPEN on real-world datasets shows that the approach\nis promising, achieving high accuracy in real-life ER scenarios. Our\nexperiments also yield useful insights into the relative merits of different\ntypes of (approximate) ER solutions, the impact of recursion, and factors\ninfluencing performance.","PeriodicalId":501123,"journal":{"name":"arXiv - CS - Databases","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ASPEN: ASP-Based System for Collective Entity Resolution\",\"authors\":\"Zhiliang Xiang, Meghyn Bienvenu, Gianluca Cima, Víctor Gutiérrez-Basulto, Yazmín Ibáñez-García\",\"doi\":\"arxiv-2408.06961\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present ASPEN, an answer set programming (ASP)\\nimplementation of a recently proposed declarative framework for collective\\nentity resolution (ER). While an ASP encoding had been previously suggested,\\nseveral practical issues had been neglected, most notably, the question of how\\nto efficiently compute the (externally defined) similarity facts that are used\\nin rule bodies. This leads us to propose new variants of the encodings\\n(including Datalog approximations) and show how to employ different\\nfunctionalities of ASP solvers to compute (maximal) solutions, and\\n(approximations of) the sets of possible and certain merges. A comprehensive\\nexperimental evaluation of ASPEN on real-world datasets shows that the approach\\nis promising, achieving high accuracy in real-life ER scenarios. Our\\nexperiments also yield useful insights into the relative merits of different\\ntypes of (approximate) ER solutions, the impact of recursion, and factors\\ninfluencing performance.\",\"PeriodicalId\":501123,\"journal\":{\"name\":\"arXiv - CS - Databases\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Databases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.06961\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Databases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.06961","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了 ASPEN,它是最近提出的集体身份解析(ER)声明式框架的答案集编程(ASP)实现。虽然之前已经提出了 ASP 编码,但有几个实际问题却被忽略了,其中最突出的是如何高效计算规则体中使用的(外部定义的)相似性事实。这促使我们提出了编码的新变体(包括 Datalog 近似值),并展示了如何利用 ASP 求解器的不同功能来计算(最大)解以及可能合并集和确定合并集(的近似值)。在真实数据集上对 ASPEN 进行的综合实验评估表明,该方法很有前途,在真实的 ER 场景中实现了很高的准确性。其他实验还对不同类型(近似)ER 解决方案的相对优点、递归的影响以及影响性能的因素提出了有益的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ASPEN: ASP-Based System for Collective Entity Resolution
In this paper, we present ASPEN, an answer set programming (ASP) implementation of a recently proposed declarative framework for collective entity resolution (ER). While an ASP encoding had been previously suggested, several practical issues had been neglected, most notably, the question of how to efficiently compute the (externally defined) similarity facts that are used in rule bodies. This leads us to propose new variants of the encodings (including Datalog approximations) and show how to employ different functionalities of ASP solvers to compute (maximal) solutions, and (approximations of) the sets of possible and certain merges. A comprehensive experimental evaluation of ASPEN on real-world datasets shows that the approach is promising, achieving high accuracy in real-life ER scenarios. Our experiments also yield useful insights into the relative merits of different types of (approximate) ER solutions, the impact of recursion, and factors influencing performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of Data Evaluation Benchmark for Data Wrangling Recommendation System Messy Code Makes Managing ML Pipelines Difficult? Just Let LLMs Rewrite the Code! Fast and Adaptive Bulk Loading of Multidimensional Points Matrix Profile for Anomaly Detection on Multidimensional Time Series Extending predictive process monitoring for collaborative processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1