深度学习辅助测量视网膜外层指标作为遗传性视网膜变性的生物标记:机遇与挑战。

IF 3 2区 医学 Q1 OPHTHALMOLOGY Current Opinion in Ophthalmology Pub Date : 2024-08-29 DOI:10.1097/icu.0000000000001088
Mark E Pennesi,Yi-Zhong Wang,David G Birch
{"title":"深度学习辅助测量视网膜外层指标作为遗传性视网膜变性的生物标记:机遇与挑战。","authors":"Mark E Pennesi,Yi-Zhong Wang,David G Birch","doi":"10.1097/icu.0000000000001088","DOIUrl":null,"url":null,"abstract":"PURPOSE OF REVIEW\r\nThe purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs.\r\n\r\nRECENT FINDINGS\r\n(clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes).\r\n\r\nSUMMARY\r\nAssessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.","PeriodicalId":50604,"journal":{"name":"Current Opinion in Ophthalmology","volume":"179 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep learning aided measurement of outer retinal layer metrics as biomarkers for inherited retinal degenerations: opportunities and challenges.\",\"authors\":\"Mark E Pennesi,Yi-Zhong Wang,David G Birch\",\"doi\":\"10.1097/icu.0000000000001088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PURPOSE OF REVIEW\\r\\nThe purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs.\\r\\n\\r\\nRECENT FINDINGS\\r\\n(clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes).\\r\\n\\r\\nSUMMARY\\r\\nAssessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.\",\"PeriodicalId\":50604,\"journal\":{\"name\":\"Current Opinion in Ophthalmology\",\"volume\":\"179 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Ophthalmology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1097/icu.0000000000001088\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPHTHALMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Ophthalmology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/icu.0000000000001088","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

综述评估光感受器缺失是评估遗传性视网膜变性(IRDs)的一种直接方法。评估光感受器缺失是评估遗传性视网膜变性(IRDs)的一种直接方法。视网膜外层结构,包括核外层、椭圆形区、感光体外节段和RPE,是IRD的潜在结构生物标志物。关于结构与功能的关系,可能还需要做更多的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep learning aided measurement of outer retinal layer metrics as biomarkers for inherited retinal degenerations: opportunities and challenges.
PURPOSE OF REVIEW The purpose of this review was to provide a summary of currently available retinal imaging and visual function testing methods for assessing inherited retinal degenerations (IRDs), with the emphasis on the application of deep learning (DL) approaches to assist the determination of structural biomarkers for IRDs. RECENT FINDINGS (clinical trials for IRDs; discover effective biomarkers as endpoints; DL applications in processing retinal images to detect disease-related structural changes). SUMMARY Assessing photoreceptor loss is a direct way to evaluate IRDs. Outer retinal layer structures, including outer nuclear layer, ellipsoid zone, photoreceptor outer segment, RPE, are potential structural biomarkers for IRDs. More work may be needed on structure and function relationship.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.80
自引率
5.40%
发文量
120
审稿时长
6-12 weeks
期刊介绍: Current Opinion in Ophthalmology is an indispensable resource featuring key up-to-date and important advances in the field from around the world. With renowned guest editors for each section, every bimonthly issue of Current Opinion in Ophthalmology delivers a fresh insight into topics such as glaucoma, refractive surgery and corneal and external disorders. With ten sections in total, the journal provides a convenient and thorough review of the field and will be of interest to researchers, clinicians and other healthcare professionals alike.
期刊最新文献
The effect of cataract surgery on lowering intraocular pressure. Artificial intelligence in ophthalmology. A comprehensive update on over the counter artificial tears. Challenges and outcomes of cataract surgery after vitrectomy. Cataract surgery combined with glaucoma surgery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1