Kai Wu, Yanrong Zhang, Xiangming Kong, Shuang Zhang, Liang Gao
{"title":"通过修改技术参数和粘合剂特性控制机器人铺地板的质量","authors":"Kai Wu, Yanrong Zhang, Xiangming Kong, Shuang Zhang, Liang Gao","doi":"10.1002/rob.22413","DOIUrl":null,"url":null,"abstract":"Floor‐tiling robotics are increasingly employed in on‐site building constructions owing to their remarkable benefits on rising working efficiency and reducing labor costs. In this study, a fluid–structure interaction (FSI) model of robotic tiling was established for the first time, construction parameters and adhesive properties were modified, and their influences on the quality of robotic floor‐tiling were systematically investigated by tracking the mechanical behaviors of tiles and adhesive during tiling and the interfacial defects after tiling. Results indicated that the established FSI model was feasible for assessing robotic tiling quality with a deviation of less than 2%. The adhesive extruded horizontally was evenly distributed in cylindrical strips. An increase in the number of extrusion pipes slightly improved the tiling quality. Compared with the leveling loads of compression and vertical vibration, shear vibration could effectively eliminate tile rebounding and enlarge the contact area of tile–adhesive by up to 135.85%. Moderate increases in the amplitude and frequency of shear vibration resulted in lower rebounding and larger contact areas. An appropriate increase of yield stress heightened tiling quality by keeping the extrusive appearance of the adhesive, increasing slightly tile rebounding and enlarging the contact area of tile–adhesive to 0.625 m<jats:sup>2</jats:sup>. As yield stress was excessively high, tremendous elastic deformations of adhesive led to remarkable tile rebounding and small contact areas of 0.375 m<jats:sup>2</jats:sup>.","PeriodicalId":192,"journal":{"name":"Journal of Field Robotics","volume":"68 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quality control of robotic floor‐tiling by the modifications on technology parameters and adhesive properties\",\"authors\":\"Kai Wu, Yanrong Zhang, Xiangming Kong, Shuang Zhang, Liang Gao\",\"doi\":\"10.1002/rob.22413\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Floor‐tiling robotics are increasingly employed in on‐site building constructions owing to their remarkable benefits on rising working efficiency and reducing labor costs. In this study, a fluid–structure interaction (FSI) model of robotic tiling was established for the first time, construction parameters and adhesive properties were modified, and their influences on the quality of robotic floor‐tiling were systematically investigated by tracking the mechanical behaviors of tiles and adhesive during tiling and the interfacial defects after tiling. Results indicated that the established FSI model was feasible for assessing robotic tiling quality with a deviation of less than 2%. The adhesive extruded horizontally was evenly distributed in cylindrical strips. An increase in the number of extrusion pipes slightly improved the tiling quality. Compared with the leveling loads of compression and vertical vibration, shear vibration could effectively eliminate tile rebounding and enlarge the contact area of tile–adhesive by up to 135.85%. Moderate increases in the amplitude and frequency of shear vibration resulted in lower rebounding and larger contact areas. An appropriate increase of yield stress heightened tiling quality by keeping the extrusive appearance of the adhesive, increasing slightly tile rebounding and enlarging the contact area of tile–adhesive to 0.625 m<jats:sup>2</jats:sup>. As yield stress was excessively high, tremendous elastic deformations of adhesive led to remarkable tile rebounding and small contact areas of 0.375 m<jats:sup>2</jats:sup>.\",\"PeriodicalId\":192,\"journal\":{\"name\":\"Journal of Field Robotics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Field Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/rob.22413\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Field Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/rob.22413","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
Quality control of robotic floor‐tiling by the modifications on technology parameters and adhesive properties
Floor‐tiling robotics are increasingly employed in on‐site building constructions owing to their remarkable benefits on rising working efficiency and reducing labor costs. In this study, a fluid–structure interaction (FSI) model of robotic tiling was established for the first time, construction parameters and adhesive properties were modified, and their influences on the quality of robotic floor‐tiling were systematically investigated by tracking the mechanical behaviors of tiles and adhesive during tiling and the interfacial defects after tiling. Results indicated that the established FSI model was feasible for assessing robotic tiling quality with a deviation of less than 2%. The adhesive extruded horizontally was evenly distributed in cylindrical strips. An increase in the number of extrusion pipes slightly improved the tiling quality. Compared with the leveling loads of compression and vertical vibration, shear vibration could effectively eliminate tile rebounding and enlarge the contact area of tile–adhesive by up to 135.85%. Moderate increases in the amplitude and frequency of shear vibration resulted in lower rebounding and larger contact areas. An appropriate increase of yield stress heightened tiling quality by keeping the extrusive appearance of the adhesive, increasing slightly tile rebounding and enlarging the contact area of tile–adhesive to 0.625 m2. As yield stress was excessively high, tremendous elastic deformations of adhesive led to remarkable tile rebounding and small contact areas of 0.375 m2.
期刊介绍:
The Journal of Field Robotics seeks to promote scholarly publications dealing with the fundamentals of robotics in unstructured and dynamic environments.
The Journal focuses on experimental robotics and encourages publication of work that has both theoretical and practical significance.