氦氢混合重组等离子体的机器学习辅助线强度比方法

IF 2.1 2区 物理与天体物理 Q2 PHYSICS, FLUIDS & PLASMAS Plasma Physics and Controlled Fusion Pub Date : 2024-08-22 DOI:10.1088/1361-6587/ad6a81
Shin Kajita, Daisuke Nishijima, Keisuke Fujii, Hirohiko Tanaka, Jordy Vernimmen, Hennie van der Meiden, Ivo Classen, Noriyasu Ohno
{"title":"氦氢混合重组等离子体的机器学习辅助线强度比方法","authors":"Shin Kajita, Daisuke Nishijima, Keisuke Fujii, Hirohiko Tanaka, Jordy Vernimmen, Hennie van der Meiden, Ivo Classen, Noriyasu Ohno","doi":"10.1088/1361-6587/ad6a81","DOIUrl":null,"url":null,"abstract":"The helium line intensity ratio (LIR) with the help of a collisional radiative (CR) model has long been used to measure the electron density, <inline-formula>\n<tex-math><?CDATA $n_\\textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn1.gif\"></inline-graphic></inline-formula>, and temperature, <inline-formula>\n<tex-math><?CDATA $T_\\textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn2.gif\"></inline-graphic></inline-formula>, and its potential and limitations for fusion applications have been discussed. However, it has been reported that the CR model approach leads to deviations in helium–hydrogen mixed plasmas and/or recombining plasmas. In this study, a machine learning (ML) aided LIR method is used to measure <inline-formula>\n<tex-math><?CDATA $n_\\textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn3.gif\"></inline-graphic></inline-formula> and <inline-formula>\n<tex-math><?CDATA $T_\\textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn4.gif\"></inline-graphic></inline-formula> from spectroscopic data of helium–hydrogen mixed recombining plasmas in the divertor simulator Magnum-PSI. To analyze mixed plasmas, which have more complex spectral shapes, the spectroscopy data were used directly for training instead of separating the intensities of each line. It is shown that the ML approach can provide a robust and simpler analysis method to deduce <inline-formula>\n<tex-math><?CDATA $n_\\textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn5.gif\"></inline-graphic></inline-formula> and <inline-formula>\n<tex-math><?CDATA $T_\\textrm{e}$?></tex-math><mml:math overflow=\"scroll\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\"ppcfad6a81ieqn6.gif\"></inline-graphic></inline-formula> from the visible emissions in helium–hydrogen mixed plasmas.","PeriodicalId":20239,"journal":{"name":"Plasma Physics and Controlled Fusion","volume":"41 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning aided line intensity ratio method for helium–hydrogen mixed recombining plasmas\",\"authors\":\"Shin Kajita, Daisuke Nishijima, Keisuke Fujii, Hirohiko Tanaka, Jordy Vernimmen, Hennie van der Meiden, Ivo Classen, Noriyasu Ohno\",\"doi\":\"10.1088/1361-6587/ad6a81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The helium line intensity ratio (LIR) with the help of a collisional radiative (CR) model has long been used to measure the electron density, <inline-formula>\\n<tex-math><?CDATA $n_\\\\textrm{e}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a81ieqn1.gif\\\"></inline-graphic></inline-formula>, and temperature, <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{e}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a81ieqn2.gif\\\"></inline-graphic></inline-formula>, and its potential and limitations for fusion applications have been discussed. However, it has been reported that the CR model approach leads to deviations in helium–hydrogen mixed plasmas and/or recombining plasmas. In this study, a machine learning (ML) aided LIR method is used to measure <inline-formula>\\n<tex-math><?CDATA $n_\\\\textrm{e}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a81ieqn3.gif\\\"></inline-graphic></inline-formula> and <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{e}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a81ieqn4.gif\\\"></inline-graphic></inline-formula> from spectroscopic data of helium–hydrogen mixed recombining plasmas in the divertor simulator Magnum-PSI. To analyze mixed plasmas, which have more complex spectral shapes, the spectroscopy data were used directly for training instead of separating the intensities of each line. It is shown that the ML approach can provide a robust and simpler analysis method to deduce <inline-formula>\\n<tex-math><?CDATA $n_\\\\textrm{e}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>n</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a81ieqn5.gif\\\"></inline-graphic></inline-formula> and <inline-formula>\\n<tex-math><?CDATA $T_\\\\textrm{e}$?></tex-math><mml:math overflow=\\\"scroll\\\"><mml:mrow><mml:msub><mml:mi>T</mml:mi><mml:mtext>e</mml:mtext></mml:msub></mml:mrow></mml:math><inline-graphic xlink:href=\\\"ppcfad6a81ieqn6.gif\\\"></inline-graphic></inline-formula> from the visible emissions in helium–hydrogen mixed plasmas.\",\"PeriodicalId\":20239,\"journal\":{\"name\":\"Plasma Physics and Controlled Fusion\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plasma Physics and Controlled Fusion\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6587/ad6a81\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plasma Physics and Controlled Fusion","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6587/ad6a81","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
引用次数: 0

摘要

长期以来,人们一直利用碰撞辐射(CR)模型的氦线强度比(LIR)来测量电子密度ne和温度Te,并讨论了其在核聚变应用中的潜力和局限性。然而,有报告称碰撞辐射模型方法会导致氦氢混合等离子体和/或重组等离子体出现偏差。本研究采用机器学习(ML)辅助 LIR 方法,从分流器模拟器 Magnum-PSI 中氦氢混合重组等离子体的光谱数据中测量 ne 和 Te。为了分析具有更复杂光谱形状的混合等离子体,直接使用光谱数据进行训练,而不是分离每条线的强度。结果表明,ML 方法可以提供一种稳健而简单的分析方法,从氦氢混合等离子体的可见光辐射中推断出氖和碲。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Machine learning aided line intensity ratio method for helium–hydrogen mixed recombining plasmas
The helium line intensity ratio (LIR) with the help of a collisional radiative (CR) model has long been used to measure the electron density, ne, and temperature, Te, and its potential and limitations for fusion applications have been discussed. However, it has been reported that the CR model approach leads to deviations in helium–hydrogen mixed plasmas and/or recombining plasmas. In this study, a machine learning (ML) aided LIR method is used to measure ne and Te from spectroscopic data of helium–hydrogen mixed recombining plasmas in the divertor simulator Magnum-PSI. To analyze mixed plasmas, which have more complex spectral shapes, the spectroscopy data were used directly for training instead of separating the intensities of each line. It is shown that the ML approach can provide a robust and simpler analysis method to deduce ne and Te from the visible emissions in helium–hydrogen mixed plasmas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plasma Physics and Controlled Fusion
Plasma Physics and Controlled Fusion 物理-物理:核物理
CiteScore
4.50
自引率
13.60%
发文量
224
审稿时长
4.5 months
期刊介绍: Plasma Physics and Controlled Fusion covers all aspects of the physics of hot, highly ionised plasmas. This includes results of current experimental and theoretical research on all aspects of the physics of high-temperature plasmas and of controlled nuclear fusion, including the basic phenomena in highly-ionised gases in the laboratory, in the ionosphere and in space, in magnetic-confinement and inertial-confinement fusion as well as related diagnostic methods. Papers with a technological emphasis, for example in such topics as plasma control, fusion technology and diagnostics, are welcomed when the plasma physics is an integral part of the paper or when the technology is unique to plasma applications or new to the field of plasma physics. Papers on dusty plasma physics are welcome when there is a clear relevance to fusion.
期刊最新文献
Reduced order modeling for real-time monitoring of structural displacements due to electromagnetic forces in large scale tokamaks He II line intensity measurements in the JET tokamak Sheath constraints on turbulent magnetised plasmas Vertical instability forecasting and controllability assessment of multi-device tokamak plasmas in DECAF with data-driven optimization Identifying L-H transition in HL-2A through deep learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1