V Jain, E Hojo, G McKillop, A Oniscu, Y Le, J Chen, R Ehman, N Roberts, HOD Critchley
{"title":"应用磁共振弹性成像(MRE)诊断子宫腺肌症的可行性研究","authors":"V Jain, E Hojo, G McKillop, A Oniscu, Y Le, J Chen, R Ehman, N Roberts, HOD Critchley","doi":"10.1101/2024.09.03.24313024","DOIUrl":null,"url":null,"abstract":"<strong>Introduction</strong> Adenomyosis is an under-recognised condition in which definitive diagnosis is only possible via histology after hysterectomy, an unacceptable option for those wishing to preserve fertility. Recent cellular/molecular studies indicate adenomyotic lesions may be fibrotic leading to increased uterine tissue stiffness. 3D Magnetic Resonance Elastography (MRE) is a novel imaging technique that allows in vivo measurement of tissue stiffness (via elastograms). 3D MRE has not been reported to study adenomyosis. The feasibility study aimed to utilise a novel 3D MRE protocol to measure global uterine stiffness and to investigate its potential application for non-invasive in vivo diagnosis of adenomyosis.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"311 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study of the application of Magnetic Resonance Elastography (MRE) to diagnose adenomyosis\",\"authors\":\"V Jain, E Hojo, G McKillop, A Oniscu, Y Le, J Chen, R Ehman, N Roberts, HOD Critchley\",\"doi\":\"10.1101/2024.09.03.24313024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Introduction</strong> Adenomyosis is an under-recognised condition in which definitive diagnosis is only possible via histology after hysterectomy, an unacceptable option for those wishing to preserve fertility. Recent cellular/molecular studies indicate adenomyotic lesions may be fibrotic leading to increased uterine tissue stiffness. 3D Magnetic Resonance Elastography (MRE) is a novel imaging technique that allows in vivo measurement of tissue stiffness (via elastograms). 3D MRE has not been reported to study adenomyosis. The feasibility study aimed to utilise a novel 3D MRE protocol to measure global uterine stiffness and to investigate its potential application for non-invasive in vivo diagnosis of adenomyosis.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"311 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.09.03.24313024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.09.03.24313024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feasibility study of the application of Magnetic Resonance Elastography (MRE) to diagnose adenomyosis
Introduction Adenomyosis is an under-recognised condition in which definitive diagnosis is only possible via histology after hysterectomy, an unacceptable option for those wishing to preserve fertility. Recent cellular/molecular studies indicate adenomyotic lesions may be fibrotic leading to increased uterine tissue stiffness. 3D Magnetic Resonance Elastography (MRE) is a novel imaging technique that allows in vivo measurement of tissue stiffness (via elastograms). 3D MRE has not been reported to study adenomyosis. The feasibility study aimed to utilise a novel 3D MRE protocol to measure global uterine stiffness and to investigate its potential application for non-invasive in vivo diagnosis of adenomyosis.