你的风格转移有用吗?对海马体分割和预处理作用的研究

Hoda Kalabizadeh, Ludovica Griffanti, Pak Hei Yeung, Natalie Voets, Grace Gillis, Clare E Mackay, Ana IL Namburete, Nicola K Dinsdale, Konstantinos Kamnitsas
{"title":"你的风格转移有用吗?对海马体分割和预处理作用的研究","authors":"Hoda Kalabizadeh, Ludovica Griffanti, Pak Hei Yeung, Natalie Voets, Grace Gillis, Clare E Mackay, Ana IL Namburete, Nicola K Dinsdale, Konstantinos Kamnitsas","doi":"10.1101/2024.08.22.24312425","DOIUrl":null,"url":null,"abstract":"Brain atrophy assessment in MRI, particularly of the hippocampus, is commonly used to support diagnosis and monitoring of dementia. Consequently, there is a demand for accurate automated hippocampus quantification. Most existing segmentation methods have been developed and validated on research datasets and, therefore, may not be appropriate for clinical MR images and populations, leading to potential gaps between dementia research and clinical practice. In this study, we investigated the performance of segmentation models trained on research data that were style-transferred to resemble clinical scans. Our results highlighted the importance of intensity normalisation methods in MRI segmentation, and their relation to domain shift and style-transfer. We found that whilst normalising intensity based on min and max values, commonly used in generative MR harmonisation methods, may create a need for style transfer, Z-score normalisation effectively maintains style consistency, and optimises performance. Moreover, we show for our datasets spatial augmentations are more beneficial than style harmonisation. Thus, emphasising robust normalisation techniques and spatial augmentation significantly improves MRI hippocampus segmentation.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"113 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Is Your Style Transfer Doing Anything Useful? An Investigation Into Hippocampus Segmentation and the Role of Preprocessing\",\"authors\":\"Hoda Kalabizadeh, Ludovica Griffanti, Pak Hei Yeung, Natalie Voets, Grace Gillis, Clare E Mackay, Ana IL Namburete, Nicola K Dinsdale, Konstantinos Kamnitsas\",\"doi\":\"10.1101/2024.08.22.24312425\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain atrophy assessment in MRI, particularly of the hippocampus, is commonly used to support diagnosis and monitoring of dementia. Consequently, there is a demand for accurate automated hippocampus quantification. Most existing segmentation methods have been developed and validated on research datasets and, therefore, may not be appropriate for clinical MR images and populations, leading to potential gaps between dementia research and clinical practice. In this study, we investigated the performance of segmentation models trained on research data that were style-transferred to resemble clinical scans. Our results highlighted the importance of intensity normalisation methods in MRI segmentation, and their relation to domain shift and style-transfer. We found that whilst normalising intensity based on min and max values, commonly used in generative MR harmonisation methods, may create a need for style transfer, Z-score normalisation effectively maintains style consistency, and optimises performance. Moreover, we show for our datasets spatial augmentations are more beneficial than style harmonisation. Thus, emphasising robust normalisation techniques and spatial augmentation significantly improves MRI hippocampus segmentation.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"113 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.22.24312425\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.22.24312425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

核磁共振成像中的脑萎缩评估,尤其是海马体的萎缩评估,通常用于痴呆症的诊断和监测。因此,需要对海马体进行精确的自动量化。现有的大多数分割方法都是在研究数据集上开发和验证的,因此可能不适合临床磁共振图像和人群,导致痴呆症研究和临床实践之间可能存在差距。在本研究中,我们研究了在研究数据上训练的分割模型的性能,这些数据经过样式转换后与临床扫描数据相似。我们的研究结果强调了核磁共振成像分割中强度归一化方法的重要性,以及它们与领域转移和风格转换的关系。我们发现,虽然基于最小值和最大值的强度归一化(通常用于生成式磁共振协调方法)可能会产生风格转换需求,但 Z 分数归一化能有效保持风格一致性,并优化性能。此外,我们的数据集显示,空间增强比风格协调更有益。因此,强调稳健的归一化技术和空间增强技术能显著提高磁共振成像海马区块的分割效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Is Your Style Transfer Doing Anything Useful? An Investigation Into Hippocampus Segmentation and the Role of Preprocessing
Brain atrophy assessment in MRI, particularly of the hippocampus, is commonly used to support diagnosis and monitoring of dementia. Consequently, there is a demand for accurate automated hippocampus quantification. Most existing segmentation methods have been developed and validated on research datasets and, therefore, may not be appropriate for clinical MR images and populations, leading to potential gaps between dementia research and clinical practice. In this study, we investigated the performance of segmentation models trained on research data that were style-transferred to resemble clinical scans. Our results highlighted the importance of intensity normalisation methods in MRI segmentation, and their relation to domain shift and style-transfer. We found that whilst normalising intensity based on min and max values, commonly used in generative MR harmonisation methods, may create a need for style transfer, Z-score normalisation effectively maintains style consistency, and optimises performance. Moreover, we show for our datasets spatial augmentations are more beneficial than style harmonisation. Thus, emphasising robust normalisation techniques and spatial augmentation significantly improves MRI hippocampus segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Auto-segmentation of hemi-diaphragms in free-breathing dynamic MRI of pediatric subjects with thoracic insufficiency syndrome Dynamic MR of muscle contraction during electrical muscle stimulation as a potential diagnostic tool for neuromuscular disease Deriving Imaging Biomarkers for Primary Central Nervous System Lymphoma Using Deep Learning Exploring subthreshold functional network alterations in women with phenylketonuria by higher criticism Beyond Algorithms: The Impact of Simplified CNN Models and Multifactorial Influences on Radiological Image Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1