Steven Squires, Grey Kuling, D. Gareth Evans, Anne L. Martel, Susan M. Astley
{"title":"使用序数法和分类法对乳腺 X 线照相术密度预测进行深度学习的模型不确定性估计","authors":"Steven Squires, Grey Kuling, D. Gareth Evans, Anne L. Martel, Susan M. Astley","doi":"10.1101/2024.08.31.24312184","DOIUrl":null,"url":null,"abstract":"<strong>Purpose</strong> Mammographic density is associated with the risk of developing breast cancer and can be predicted using deep learning methods. Model uncertainty estimates are not produced by standard regression approaches but would be valuable for clinical and research purposes. Our objective is to produce deep learning models with in-built uncertainty estimates without degrading predictive performance.","PeriodicalId":501358,"journal":{"name":"medRxiv - Radiology and Imaging","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model uncertainty estimates for deep learning mammographic density prediction using ordinal and classification approaches\",\"authors\":\"Steven Squires, Grey Kuling, D. Gareth Evans, Anne L. Martel, Susan M. Astley\",\"doi\":\"10.1101/2024.08.31.24312184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<strong>Purpose</strong> Mammographic density is associated with the risk of developing breast cancer and can be predicted using deep learning methods. Model uncertainty estimates are not produced by standard regression approaches but would be valuable for clinical and research purposes. Our objective is to produce deep learning models with in-built uncertainty estimates without degrading predictive performance.\",\"PeriodicalId\":501358,\"journal\":{\"name\":\"medRxiv - Radiology and Imaging\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Radiology and Imaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.08.31.24312184\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Radiology and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.08.31.24312184","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Model uncertainty estimates for deep learning mammographic density prediction using ordinal and classification approaches
Purpose Mammographic density is associated with the risk of developing breast cancer and can be predicted using deep learning methods. Model uncertainty estimates are not produced by standard regression approaches but would be valuable for clinical and research purposes. Our objective is to produce deep learning models with in-built uncertainty estimates without degrading predictive performance.