{"title":"斜坡附近刚性挡土墙横向破坏模式下砂土的主动土压力分析","authors":"Lianheng Zhao, Zheng Zhong, Biao Zhao, Zhonglin Zeng, Xiaogen Gong, Shihong Hu","doi":"10.1007/s12205-024-0846-5","DOIUrl":null,"url":null,"abstract":"<p>To accurately obtain the active earth pressure of a limited-width sandy fill behind a rigid retaining wall under translational failure, finite element limit analysis (FELA) was used to simulate the failure mechanism of the limited-width sandy fill behind the wall under the translational failure mode of the rigid retaining wall. Based on the different development characteristics of the sliding surface, three kinds of failure mode characteristics were identified. Semianalytical expressions of the active earth pressure were obtained by using the limit equilibrium method and the finite difference method, introducing the horizontal differential element and considering the soil arching effect behind the wall. The parameter analysis shows that the width-to-height ratio of the fill and the slope angle play a controlling role in the failure mode and that the position of the resultant force corresponding to the active earth pressure under different failure modes also changes significantly. The active earth pressure exerted on the retaining wall is maximized at a particular threshold of the friction angle at the wall–fill interface, which varies according to the geometric shape of the backfill and its internal friction angle.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of the Active Earth Pressure of Sandy Soil under the Translational Failure Mode of Rigid Retaining Walls Near Slopes\",\"authors\":\"Lianheng Zhao, Zheng Zhong, Biao Zhao, Zhonglin Zeng, Xiaogen Gong, Shihong Hu\",\"doi\":\"10.1007/s12205-024-0846-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To accurately obtain the active earth pressure of a limited-width sandy fill behind a rigid retaining wall under translational failure, finite element limit analysis (FELA) was used to simulate the failure mechanism of the limited-width sandy fill behind the wall under the translational failure mode of the rigid retaining wall. Based on the different development characteristics of the sliding surface, three kinds of failure mode characteristics were identified. Semianalytical expressions of the active earth pressure were obtained by using the limit equilibrium method and the finite difference method, introducing the horizontal differential element and considering the soil arching effect behind the wall. The parameter analysis shows that the width-to-height ratio of the fill and the slope angle play a controlling role in the failure mode and that the position of the resultant force corresponding to the active earth pressure under different failure modes also changes significantly. The active earth pressure exerted on the retaining wall is maximized at a particular threshold of the friction angle at the wall–fill interface, which varies according to the geometric shape of the backfill and its internal friction angle.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-0846-5\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-0846-5","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analysis of the Active Earth Pressure of Sandy Soil under the Translational Failure Mode of Rigid Retaining Walls Near Slopes
To accurately obtain the active earth pressure of a limited-width sandy fill behind a rigid retaining wall under translational failure, finite element limit analysis (FELA) was used to simulate the failure mechanism of the limited-width sandy fill behind the wall under the translational failure mode of the rigid retaining wall. Based on the different development characteristics of the sliding surface, three kinds of failure mode characteristics were identified. Semianalytical expressions of the active earth pressure were obtained by using the limit equilibrium method and the finite difference method, introducing the horizontal differential element and considering the soil arching effect behind the wall. The parameter analysis shows that the width-to-height ratio of the fill and the slope angle play a controlling role in the failure mode and that the position of the resultant force corresponding to the active earth pressure under different failure modes also changes significantly. The active earth pressure exerted on the retaining wall is maximized at a particular threshold of the friction angle at the wall–fill interface, which varies according to the geometric shape of the backfill and its internal friction angle.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.