{"title":"基于钢螺旋锚桩的桩基静载荷测试系统的开发与应用","authors":"Zhiguo Zhou, Jun Yang, Xiaoli Sun, Dongchang Ye","doi":"10.1007/s12205-024-1699-7","DOIUrl":null,"url":null,"abstract":"<p>A new type of static load test system and test method based on steel screw anchor pile is proposed. Through field uplift tests of single pile and pile group, the influence of soil properties, pile length and other factors on the uplift bearing capacity of steel screw pile is analyzed. The influence range of steel screw pile on the displacement of adjacent soil and pile foundation are revealed. The calculation method of ultimate uplift bearing capacity of single steel screw anchor pile is established. The reliability of the test method is verified by practical cases. The test results show that the uplift bearing capacity of steel screw pile is higher than that of straight rod pile. According to the properties and compactness of the soil, the coefficient of uplift side resistance improvement of steel screw piles can be taken as 1.2 – 1.6. The construction of steel screw pile is convenient and can be reused, without special treatment of the test site. The test method can save up to 70% of the cost compared with traditional surcharge test method, and greatly improve the safety of large-tonnage static load test.</p>","PeriodicalId":17897,"journal":{"name":"KSCE Journal of Civil Engineering","volume":"14 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Application of Static Load Test System for Pile Foundation Based on Steel Screw Anchor Piles\",\"authors\":\"Zhiguo Zhou, Jun Yang, Xiaoli Sun, Dongchang Ye\",\"doi\":\"10.1007/s12205-024-1699-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A new type of static load test system and test method based on steel screw anchor pile is proposed. Through field uplift tests of single pile and pile group, the influence of soil properties, pile length and other factors on the uplift bearing capacity of steel screw pile is analyzed. The influence range of steel screw pile on the displacement of adjacent soil and pile foundation are revealed. The calculation method of ultimate uplift bearing capacity of single steel screw anchor pile is established. The reliability of the test method is verified by practical cases. The test results show that the uplift bearing capacity of steel screw pile is higher than that of straight rod pile. According to the properties and compactness of the soil, the coefficient of uplift side resistance improvement of steel screw piles can be taken as 1.2 – 1.6. The construction of steel screw pile is convenient and can be reused, without special treatment of the test site. The test method can save up to 70% of the cost compared with traditional surcharge test method, and greatly improve the safety of large-tonnage static load test.</p>\",\"PeriodicalId\":17897,\"journal\":{\"name\":\"KSCE Journal of Civil Engineering\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"KSCE Journal of Civil Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12205-024-1699-7\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"KSCE Journal of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12205-024-1699-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Development and Application of Static Load Test System for Pile Foundation Based on Steel Screw Anchor Piles
A new type of static load test system and test method based on steel screw anchor pile is proposed. Through field uplift tests of single pile and pile group, the influence of soil properties, pile length and other factors on the uplift bearing capacity of steel screw pile is analyzed. The influence range of steel screw pile on the displacement of adjacent soil and pile foundation are revealed. The calculation method of ultimate uplift bearing capacity of single steel screw anchor pile is established. The reliability of the test method is verified by practical cases. The test results show that the uplift bearing capacity of steel screw pile is higher than that of straight rod pile. According to the properties and compactness of the soil, the coefficient of uplift side resistance improvement of steel screw piles can be taken as 1.2 – 1.6. The construction of steel screw pile is convenient and can be reused, without special treatment of the test site. The test method can save up to 70% of the cost compared with traditional surcharge test method, and greatly improve the safety of large-tonnage static load test.
期刊介绍:
The KSCE Journal of Civil Engineering is a technical bimonthly journal of the Korean Society of Civil Engineers. The journal reports original study results (both academic and practical) on past practices and present information in all civil engineering fields.
The journal publishes original papers within the broad field of civil engineering, which includes, but are not limited to, the following: coastal and harbor engineering, construction management, environmental engineering, geotechnical engineering, highway engineering, hydraulic engineering, information technology, nuclear power engineering, railroad engineering, structural engineering, surveying and geo-spatial engineering, transportation engineering, tunnel engineering, and water resources and hydrologic engineering