一种新型分布式零母线模型,用于优化主动配电网中分布式发电机的规模和选址

IF 1.6 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC Electrical Engineering Pub Date : 2024-09-11 DOI:10.1007/s00202-024-02669-1
Kutikuppala Nareshkumar, Nibir Baran Roy, Debapriya Das
{"title":"一种新型分布式零母线模型,用于优化主动配电网中分布式发电机的规模和选址","authors":"Kutikuppala Nareshkumar, Nibir Baran Roy, Debapriya Das","doi":"10.1007/s00202-024-02669-1","DOIUrl":null,"url":null,"abstract":"<p>The integration of distributed generators (DGs) into distribution networks has the potential to decrease network power losses, provided that DGs of suitable capacity are strategically positioned. In this regard, this paper proposes an optimal combination of a novel analytical and meta-heuristic method for the appropriate placement and sizing of dispatchable and renewable generators in an active distribution network with a preset power exchange contract with the main grid. A fuzzy framework embedded in a mixed-discrete grey wolf optimizer is adopted to find the accurate locations and capacities of renewable DGs, whereas a novel distributed zero bus technique is orchestrated to get the proper sizes of the required number of dispatchable biomass generators simultaneously. The proposed planning problem takes care of the intermittent attributes of renewable sources using the worst-case realization approach. The trade-off among multi-objectives, such as reduction in active power loss, improvement in node voltage profile, and curtailment in annualized DG costs, is achieved using fuzzy max-min composition. The economic viability of the obtained solutions is evaluated by a cost-benefit analysis. The efficacy of the suggested strategy is tested on a 69-bus distribution network. Additionally, the outcomes are compared with the already existing solutions in the literature.</p>","PeriodicalId":50546,"journal":{"name":"Electrical Engineering","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel distributed zero bus model for optimal sizing and siting of distributed generators in an active distribution network\",\"authors\":\"Kutikuppala Nareshkumar, Nibir Baran Roy, Debapriya Das\",\"doi\":\"10.1007/s00202-024-02669-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of distributed generators (DGs) into distribution networks has the potential to decrease network power losses, provided that DGs of suitable capacity are strategically positioned. In this regard, this paper proposes an optimal combination of a novel analytical and meta-heuristic method for the appropriate placement and sizing of dispatchable and renewable generators in an active distribution network with a preset power exchange contract with the main grid. A fuzzy framework embedded in a mixed-discrete grey wolf optimizer is adopted to find the accurate locations and capacities of renewable DGs, whereas a novel distributed zero bus technique is orchestrated to get the proper sizes of the required number of dispatchable biomass generators simultaneously. The proposed planning problem takes care of the intermittent attributes of renewable sources using the worst-case realization approach. The trade-off among multi-objectives, such as reduction in active power loss, improvement in node voltage profile, and curtailment in annualized DG costs, is achieved using fuzzy max-min composition. The economic viability of the obtained solutions is evaluated by a cost-benefit analysis. The efficacy of the suggested strategy is tested on a 69-bus distribution network. Additionally, the outcomes are compared with the already existing solutions in the literature.</p>\",\"PeriodicalId\":50546,\"journal\":{\"name\":\"Electrical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s00202-024-02669-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00202-024-02669-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

将分布式发电机(DGs)集成到配电网络中具有减少网络电能损耗的潜力,但前提是必须对具有适当容量的分布式发电机进行战略定位。为此,本文提出了一种新颖的分析和元启发式优化组合方法,用于在与主电网有预设电力交换合同的有源配电网中适当布置可调度和可再生能源发电机并确定其规模。在混合离散灰狼优化器中嵌入了一个模糊框架,以找到可再生风力发电机的准确位置和容量,同时采用了一种新颖的分布式零总线技术,以同时获得所需数量的可调度生物质发电机的适当规模。所提出的规划问题采用最坏情况实现方法,考虑到了可再生能源的间歇属性。多目标之间的权衡,如减少有功功率损耗、改善节点电压曲线和削减 DG 年化成本,是通过模糊最大最小组合来实现的。通过成本效益分析评估了所获解决方案的经济可行性。在 69 总线配电网络上测试了所建议策略的有效性。此外,还将结果与文献中已有的解决方案进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel distributed zero bus model for optimal sizing and siting of distributed generators in an active distribution network

The integration of distributed generators (DGs) into distribution networks has the potential to decrease network power losses, provided that DGs of suitable capacity are strategically positioned. In this regard, this paper proposes an optimal combination of a novel analytical and meta-heuristic method for the appropriate placement and sizing of dispatchable and renewable generators in an active distribution network with a preset power exchange contract with the main grid. A fuzzy framework embedded in a mixed-discrete grey wolf optimizer is adopted to find the accurate locations and capacities of renewable DGs, whereas a novel distributed zero bus technique is orchestrated to get the proper sizes of the required number of dispatchable biomass generators simultaneously. The proposed planning problem takes care of the intermittent attributes of renewable sources using the worst-case realization approach. The trade-off among multi-objectives, such as reduction in active power loss, improvement in node voltage profile, and curtailment in annualized DG costs, is achieved using fuzzy max-min composition. The economic viability of the obtained solutions is evaluated by a cost-benefit analysis. The efficacy of the suggested strategy is tested on a 69-bus distribution network. Additionally, the outcomes are compared with the already existing solutions in the literature.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrical Engineering
Electrical Engineering 工程技术-工程:电子与电气
CiteScore
3.60
自引率
16.70%
发文量
0
审稿时长
>12 weeks
期刊介绍: The journal “Electrical Engineering” following the long tradition of Archiv für Elektrotechnik publishes original papers of archival value in electrical engineering with a strong focus on electric power systems, smart grid approaches to power transmission and distribution, power system planning, operation and control, electricity markets, renewable power generation, microgrids, power electronics, electrical machines and drives, electric vehicles, railway electrification systems and electric transportation infrastructures, energy storage in electric power systems and vehicles, high voltage engineering, electromagnetic transients in power networks, lightning protection, electrical safety, electrical insulation systems, apparatus, devices, and components. Manuscripts describing theoretical, computer application and experimental research results are welcomed. Electrical Engineering - Archiv für Elektrotechnik is published in agreement with Verband der Elektrotechnik Elektronik Informationstechnik eV (VDE).
期刊最新文献
A method for assessing and locating protection measurement loop errors based on an improved similarity algorithm Microgrid energy management with renewable energy using gravitational search algorithm Generation expansion planning incorporating the recuperation of older power plants for economic advantage Robot dynamics-based cable fault diagnosis using stacked transformer encoder layers Rule based coordinated source and demand side energy management of a remote area power supply system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1