{"title":"用于高速估算外部磁场的带短时记忆的自旋波水库芯片","authors":"Sho Nagase, Shoki Nezu, Koji Sekiguchi","doi":"10.1103/physrevapplied.22.024072","DOIUrl":null,"url":null,"abstract":"The experimental realization of a spin-wave reservoir chip employing ferromagnetic permalloy thin films is presented. The novel device facilitates the interference of three spherical wave-excited surface mode spin waves within a rectangular waveguide via strategically positioned slits, enabling the detection of electrical signals from surface mode spin waves across all four observation antennas. Through the experiments conducted, it is confirmed that the device functions as a one-input, four-output reservoir capable of estimating external magnetic fields. Notably, the results demonstrate the device’s capacity to retain memory up to one step prior in short-term memory tasks, while confirming the effectiveness of spin-wave interference induced by Huygens slits in enhancing nonlinearity, as observed in parity-check tasks. Furthermore, the inclusion of additional detection antennas contributes to improved learning accuracy, highlighting the significant progress achieved by the spin-wave reservoir chip. These findings underscore substantial progress toward practical implementation, with promising avenues for further development and refinement, showing its remarkable ability to process signals at high speeds, even with 0.8-ns pulse sequences.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"24 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spin-wave reservoir chips with short-term memory for high-speed estimation of external magnetic fields\",\"authors\":\"Sho Nagase, Shoki Nezu, Koji Sekiguchi\",\"doi\":\"10.1103/physrevapplied.22.024072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The experimental realization of a spin-wave reservoir chip employing ferromagnetic permalloy thin films is presented. The novel device facilitates the interference of three spherical wave-excited surface mode spin waves within a rectangular waveguide via strategically positioned slits, enabling the detection of electrical signals from surface mode spin waves across all four observation antennas. Through the experiments conducted, it is confirmed that the device functions as a one-input, four-output reservoir capable of estimating external magnetic fields. Notably, the results demonstrate the device’s capacity to retain memory up to one step prior in short-term memory tasks, while confirming the effectiveness of spin-wave interference induced by Huygens slits in enhancing nonlinearity, as observed in parity-check tasks. Furthermore, the inclusion of additional detection antennas contributes to improved learning accuracy, highlighting the significant progress achieved by the spin-wave reservoir chip. These findings underscore substantial progress toward practical implementation, with promising avenues for further development and refinement, showing its remarkable ability to process signals at high speeds, even with 0.8-ns pulse sequences.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024072\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024072","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Spin-wave reservoir chips with short-term memory for high-speed estimation of external magnetic fields
The experimental realization of a spin-wave reservoir chip employing ferromagnetic permalloy thin films is presented. The novel device facilitates the interference of three spherical wave-excited surface mode spin waves within a rectangular waveguide via strategically positioned slits, enabling the detection of electrical signals from surface mode spin waves across all four observation antennas. Through the experiments conducted, it is confirmed that the device functions as a one-input, four-output reservoir capable of estimating external magnetic fields. Notably, the results demonstrate the device’s capacity to retain memory up to one step prior in short-term memory tasks, while confirming the effectiveness of spin-wave interference induced by Huygens slits in enhancing nonlinearity, as observed in parity-check tasks. Furthermore, the inclusion of additional detection antennas contributes to improved learning accuracy, highlighting the significant progress achieved by the spin-wave reservoir chip. These findings underscore substantial progress toward practical implementation, with promising avenues for further development and refinement, showing its remarkable ability to process signals at high speeds, even with 0.8-ns pulse sequences.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.