{"title":"用于水下操纵轨道角动量的超声波透镜的非局部反设计","authors":"Chuanxin Zhang, Fei Dai, Xue Jiang, Dean Ta","doi":"10.1103/physrevapplied.22.024070","DOIUrl":null,"url":null,"abstract":"Acoustic orbital angular momentum (OAM) beams hold potential for underwater communications, particle manipulation, and biomedical applications. However, adapting air-based OAM technologies to the underwater environment presents unique challenges. In the underwater environment, the medium cannot be considered acoustically soft, and commonly used ultrasound frequencies have shorter wavelengths compared with air, necessitating new design approaches. Conventional underwater ultrasonic lens design methods often rely on simplified models that neglect nonlocal interactions and diffraction within the structure, therefore leading to suboptimal performance. We introduce a novel nonlocal inverse design method by integrating the full-wave models with the nondominated sorting genetic algorithm II (NSGA-II). This approach diverges from conventional phase-based design by optimizing the physical structure of the lens to account for nonlocal interactions within the material. We experimentally demonstrate the performance when generating high-purity OAM beams underwater. Our experimental results show that this method can generate high-purity OAM beams underwater, achieving over 90% purity for the OAM beams of topological charges from <i>m</i> = 1 to <i>m</i> = 4. This is a significant improvement compared with traditional methods, which typically reach 70–89% purity. These findings highlight the practical applicability of our method for nonlocally designing the ultrasonic lens, paving the way for advancements in beam performance for various applications.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"313 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlocal inverse design of an ultrasonic lens for underwater manipulation of orbital angular momentum\",\"authors\":\"Chuanxin Zhang, Fei Dai, Xue Jiang, Dean Ta\",\"doi\":\"10.1103/physrevapplied.22.024070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Acoustic orbital angular momentum (OAM) beams hold potential for underwater communications, particle manipulation, and biomedical applications. However, adapting air-based OAM technologies to the underwater environment presents unique challenges. In the underwater environment, the medium cannot be considered acoustically soft, and commonly used ultrasound frequencies have shorter wavelengths compared with air, necessitating new design approaches. Conventional underwater ultrasonic lens design methods often rely on simplified models that neglect nonlocal interactions and diffraction within the structure, therefore leading to suboptimal performance. We introduce a novel nonlocal inverse design method by integrating the full-wave models with the nondominated sorting genetic algorithm II (NSGA-II). This approach diverges from conventional phase-based design by optimizing the physical structure of the lens to account for nonlocal interactions within the material. We experimentally demonstrate the performance when generating high-purity OAM beams underwater. Our experimental results show that this method can generate high-purity OAM beams underwater, achieving over 90% purity for the OAM beams of topological charges from <i>m</i> = 1 to <i>m</i> = 4. This is a significant improvement compared with traditional methods, which typically reach 70–89% purity. These findings highlight the practical applicability of our method for nonlocally designing the ultrasonic lens, paving the way for advancements in beam performance for various applications.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"313 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.024070\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.024070","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
声轨道角动量(OAM)光束在水下通信、粒子操纵和生物医学应用方面具有潜力。然而,将基于空气的 OAM 技术应用于水下环境面临着独特的挑战。在水下环境中,介质不能被视为声学上的软介质,而且常用的超声波频率与空气相比波长较短,因此必须采用新的设计方法。传统的水下超声透镜设计方法往往依赖于简化模型,忽略了结构内部的非局部相互作用和衍射,因此导致性能不理想。我们通过将全波模型与非支配排序遗传算法 II(NSGA-II)相结合,引入了一种新的非局部反向设计方法。这种方法不同于传统的基于相位的设计,而是通过优化透镜的物理结构来考虑材料内部的非局部相互作用。我们通过实验证明了这种方法在水下产生高纯度 OAM 光束时的性能。实验结果表明,这种方法可以在水下生成高纯度的 OAM 光束,拓扑电荷从 m = 1 到 m = 4 的 OAM 光束纯度超过 90%。与传统方法相比,这是一个重大改进,传统方法的纯度通常为 70%-89%。这些发现凸显了我们非局部设计超声透镜方法的实用性,为提高各种应用的光束性能铺平了道路。
Nonlocal inverse design of an ultrasonic lens for underwater manipulation of orbital angular momentum
Acoustic orbital angular momentum (OAM) beams hold potential for underwater communications, particle manipulation, and biomedical applications. However, adapting air-based OAM technologies to the underwater environment presents unique challenges. In the underwater environment, the medium cannot be considered acoustically soft, and commonly used ultrasound frequencies have shorter wavelengths compared with air, necessitating new design approaches. Conventional underwater ultrasonic lens design methods often rely on simplified models that neglect nonlocal interactions and diffraction within the structure, therefore leading to suboptimal performance. We introduce a novel nonlocal inverse design method by integrating the full-wave models with the nondominated sorting genetic algorithm II (NSGA-II). This approach diverges from conventional phase-based design by optimizing the physical structure of the lens to account for nonlocal interactions within the material. We experimentally demonstrate the performance when generating high-purity OAM beams underwater. Our experimental results show that this method can generate high-purity OAM beams underwater, achieving over 90% purity for the OAM beams of topological charges from m = 1 to m = 4. This is a significant improvement compared with traditional methods, which typically reach 70–89% purity. These findings highlight the practical applicability of our method for nonlocally designing the ultrasonic lens, paving the way for advancements in beam performance for various applications.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.