{"title":"通过偶极耦合提高磁子逻辑门的信噪比","authors":"Ryunosuke Hayashi, Shoki Nezu, Koji Sekiguchi","doi":"10.1103/physrevapplied.22.034037","DOIUrl":null,"url":null,"abstract":"This work presents a significant advancement in spin-wave computing devices utilizing magnetostatic surface spin waves. We demonstrate a micro-<span>Y</span>-shaped waveguide fabricated from yttrium iron garnet with a nanometer thickness. This intricately engineered design enables a novel logic device with two inputs and one output, enabling future cascading of such elements. Electrical measurements on the <span>Y</span>-shaped structure reveal that strategically introduced gaps effectively manipulate spin-wave propagation, as corroborated by detailed micromagnetic simulations. Notably, we achieve robust diagonal spin-wave transmission across 1.2 µm gaps, covering a distance of 120 µm. Furthermore, the gapped device exhibits clear phase-dependent spin-wave interference, surpassing the performance of a conventional <span>Y</span>-shaped design. This phenomenon, confirmed by mapping simulated magnetization components, signifies the potential of dipole-coupled devices for realizing efficient 2-input-1-output magnonic logic elements, laying the groundwork for future development in this field.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":"9 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhanced signal-to-noise ratio in magnonic logic gates via dipole coupling\",\"authors\":\"Ryunosuke Hayashi, Shoki Nezu, Koji Sekiguchi\",\"doi\":\"10.1103/physrevapplied.22.034037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents a significant advancement in spin-wave computing devices utilizing magnetostatic surface spin waves. We demonstrate a micro-<span>Y</span>-shaped waveguide fabricated from yttrium iron garnet with a nanometer thickness. This intricately engineered design enables a novel logic device with two inputs and one output, enabling future cascading of such elements. Electrical measurements on the <span>Y</span>-shaped structure reveal that strategically introduced gaps effectively manipulate spin-wave propagation, as corroborated by detailed micromagnetic simulations. Notably, we achieve robust diagonal spin-wave transmission across 1.2 µm gaps, covering a distance of 120 µm. Furthermore, the gapped device exhibits clear phase-dependent spin-wave interference, surpassing the performance of a conventional <span>Y</span>-shaped design. This phenomenon, confirmed by mapping simulated magnetization components, signifies the potential of dipole-coupled devices for realizing efficient 2-input-1-output magnonic logic elements, laying the groundwork for future development in this field.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034037\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034037","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
这项工作展示了利用磁静力表面自旋波的自旋波计算设备的重大进展。我们展示了用纳米厚度的钇铁石榴石制造的微型 Y 形波导。这种复杂的工程设计实现了一种具有两个输入和一个输出的新型逻辑器件,使未来此类元件的级联成为可能。对 Y 型结构进行的电学测量显示,策略性引入的间隙能有效操纵自旋波的传播,详细的微磁模拟也证实了这一点。值得注意的是,我们实现了跨越 1.2 微米间隙、覆盖 120 微米距离的强劲对角线自旋波传输。此外,间隙器件还表现出明显的相位自旋波干涉,性能超过了传统的 Y 型设计。这一现象通过绘制模拟磁化分量图得到证实,表明偶极耦合器件具有实现高效 2 输入 1 输出磁性逻辑元件的潜力,为这一领域的未来发展奠定了基础。
Enhanced signal-to-noise ratio in magnonic logic gates via dipole coupling
This work presents a significant advancement in spin-wave computing devices utilizing magnetostatic surface spin waves. We demonstrate a micro-Y-shaped waveguide fabricated from yttrium iron garnet with a nanometer thickness. This intricately engineered design enables a novel logic device with two inputs and one output, enabling future cascading of such elements. Electrical measurements on the Y-shaped structure reveal that strategically introduced gaps effectively manipulate spin-wave propagation, as corroborated by detailed micromagnetic simulations. Notably, we achieve robust diagonal spin-wave transmission across 1.2 µm gaps, covering a distance of 120 µm. Furthermore, the gapped device exhibits clear phase-dependent spin-wave interference, surpassing the performance of a conventional Y-shaped design. This phenomenon, confirmed by mapping simulated magnetization components, signifies the potential of dipole-coupled devices for realizing efficient 2-input-1-output magnonic logic elements, laying the groundwork for future development in this field.
期刊介绍:
Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry.
PRApplied focuses on topics including:
Biophysics, bioelectronics, and biomedical engineering,
Device physics,
Electronics,
Technology to harvest, store, and transmit energy, focusing on renewable energy technologies,
Geophysics and space science,
Industrial physics,
Magnetism and spintronics,
Metamaterials,
Microfluidics,
Nonlinear dynamics and pattern formation in natural or manufactured systems,
Nanoscience and nanotechnology,
Optics, optoelectronics, photonics, and photonic devices,
Quantum information processing, both algorithms and hardware,
Soft matter physics, including granular and complex fluids and active matter.