受困离子中特定噪声的 Steane 代码保护的逻辑量子电路

IF 3.8 2区 物理与天体物理 Q2 PHYSICS, APPLIED Physical Review Applied Pub Date : 2024-09-10 DOI:10.1103/physrevapplied.22.034020
Sheng-Chen Liu, Lin Cheng, Liang-You Peng, Qihuang Gong
{"title":"受困离子中特定噪声的 Steane 代码保护的逻辑量子电路","authors":"Sheng-Chen Liu, Lin Cheng, Liang-You Peng, Qihuang Gong","doi":"10.1103/physrevapplied.22.034020","DOIUrl":null,"url":null,"abstract":"In the presence of physical noise of all platforms for quantum computation, quantum error correction (QEC) becomes a critical way to realize quantum algorithms with large quantum volumes. In order to understand the influence of quantum noise on QEC codes and further improve the performance of logical circuits, the noises should be accurately analyzed with proper models. Here we focus on the trapped-ion system. Fundamentally, we start from the laser pulses of the quantum gates in the circuits and extract the noise components from the complete evolution of the quantum states, beyond the standard depolarizing model and other simplified models. Our simulations indicate that the logical performance under real noises is significantly better than that predicted by previous models. Meanwhile, the advantage of QEC is shown in the levels of one, two, and more logical qubits. Moreover, we can increase the logical fidelity by the method of ion mapping, which is based on knowledge of the specific noise distribution of different ions. Some powerful evidence from the numerical results demonstrates the possibility to access fault-tolerant quantum computation with the trapped-ion system.","PeriodicalId":20109,"journal":{"name":"Physical Review Applied","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Logical quantum circuits protected by the Steane code for specific noises in trapped ions\",\"authors\":\"Sheng-Chen Liu, Lin Cheng, Liang-You Peng, Qihuang Gong\",\"doi\":\"10.1103/physrevapplied.22.034020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the presence of physical noise of all platforms for quantum computation, quantum error correction (QEC) becomes a critical way to realize quantum algorithms with large quantum volumes. In order to understand the influence of quantum noise on QEC codes and further improve the performance of logical circuits, the noises should be accurately analyzed with proper models. Here we focus on the trapped-ion system. Fundamentally, we start from the laser pulses of the quantum gates in the circuits and extract the noise components from the complete evolution of the quantum states, beyond the standard depolarizing model and other simplified models. Our simulations indicate that the logical performance under real noises is significantly better than that predicted by previous models. Meanwhile, the advantage of QEC is shown in the levels of one, two, and more logical qubits. Moreover, we can increase the logical fidelity by the method of ion mapping, which is based on knowledge of the specific noise distribution of different ions. Some powerful evidence from the numerical results demonstrates the possibility to access fault-tolerant quantum computation with the trapped-ion system.\",\"PeriodicalId\":20109,\"journal\":{\"name\":\"Physical Review Applied\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review Applied\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevapplied.22.034020\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Applied","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevapplied.22.034020","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在所有量子计算平台都存在物理噪声的情况下,量子纠错(QEC)成为实现大量子量子算法的关键途径。为了理解量子噪声对 QEC 代码的影响并进一步提高逻辑电路的性能,应该用适当的模型对噪声进行精确分析。在此,我们重点讨论困离子系统。从根本上说,我们从电路中量子门的激光脉冲出发,从量子态的完整演化过程中提取噪声成分,超越了标准去极化模型和其他简化模型。我们的模拟表明,真实噪声下的逻辑性能明显优于以往模型的预测。同时,QEC 的优势还体现在一个、两个和更多逻辑量子比特的层面上。此外,我们还可以通过离子映射的方法提高逻辑保真度,这种方法是基于对不同离子特定噪声分布的了解。一些来自数值结果的有力证据表明,利用困离子系统进行容错量子计算是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Logical quantum circuits protected by the Steane code for specific noises in trapped ions
In the presence of physical noise of all platforms for quantum computation, quantum error correction (QEC) becomes a critical way to realize quantum algorithms with large quantum volumes. In order to understand the influence of quantum noise on QEC codes and further improve the performance of logical circuits, the noises should be accurately analyzed with proper models. Here we focus on the trapped-ion system. Fundamentally, we start from the laser pulses of the quantum gates in the circuits and extract the noise components from the complete evolution of the quantum states, beyond the standard depolarizing model and other simplified models. Our simulations indicate that the logical performance under real noises is significantly better than that predicted by previous models. Meanwhile, the advantage of QEC is shown in the levels of one, two, and more logical qubits. Moreover, we can increase the logical fidelity by the method of ion mapping, which is based on knowledge of the specific noise distribution of different ions. Some powerful evidence from the numerical results demonstrates the possibility to access fault-tolerant quantum computation with the trapped-ion system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review Applied
Physical Review Applied PHYSICS, APPLIED-
CiteScore
7.80
自引率
8.70%
发文量
760
审稿时长
2.5 months
期刊介绍: Physical Review Applied (PRApplied) publishes high-quality papers that bridge the gap between engineering and physics, and between current and future technologies. PRApplied welcomes papers from both the engineering and physics communities, in academia and industry. PRApplied focuses on topics including: Biophysics, bioelectronics, and biomedical engineering, Device physics, Electronics, Technology to harvest, store, and transmit energy, focusing on renewable energy technologies, Geophysics and space science, Industrial physics, Magnetism and spintronics, Metamaterials, Microfluidics, Nonlinear dynamics and pattern formation in natural or manufactured systems, Nanoscience and nanotechnology, Optics, optoelectronics, photonics, and photonic devices, Quantum information processing, both algorithms and hardware, Soft matter physics, including granular and complex fluids and active matter.
期刊最新文献
Nonreciprocity of surface acoustic waves coupled to spin waves in a ferromagnetic bilayer with noncollinear layer magnetizations Experimental demonstration of deep-learning-enabled adaptive optics Power-stabilized 3-W blue laser locked to the 420-nm transition in rubidium Control of threshold voltages in Si/Si0.7Ge0.3 quantum devices via optical illumination Static quantum dot on a large potential hilltop for generating and analyzing hot electrons in the quantum Hall regime
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1