{"title":"磁场影响下的可变流体特性对旋转球体停滞点区域非稳定辐射纳米流体流动的分析:数值探索","authors":"Raju Bag, Prabir Kumar Kundu","doi":"10.1088/1873-7005/ad6a38","DOIUrl":null,"url":null,"abstract":"The purpose of this article is to invent the impact of inconstant properties of fluids on the nanofluidic stream towards the stagnation area of a revolving sphere. The motion is treated as an unsteady radiated flow with a nonlinear sort of heat radiation. It is presumed to have Brownian motion & thermophoretic impact in our flow model. Additionally, a variable magnetic influence is addressed perpendicularly on the spherical surface. A suitable alteration has been applied to make dimensionless of our prime flow profiles. The translated equations and the limiting restrictions are solved through a numerical approach. The well established method RK4 Shooting technique is utilized here with Maple 2017 software. In the exploration of the consequences of requisite parameters on thermal, concentration, and flow features, numerous schematics are involved. The nature of physical quantities like Nusselt numbers, friction coefficients, and Sherwood numbers is stated in a tabular manner. It is perceived from the outcomes that the fluid velocity towards the <italic toggle=\"yes\">x</italic>-direction is reduced for the variable viscosity parameter, whereas the unsteadiness parameter promotes it. The enhancement of inconstant thermal conductivity brings a positive influence on the thermal profile of fluid. Nusselt number drops against the thermal radiation & variable viscosity with a rates 4.50% and 25.88% correspondingly.","PeriodicalId":56311,"journal":{"name":"Fluid Dynamics Research","volume":"9 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of variable fluidic properties with varying magnetic influence on an unsteady radiated nanofluid flow on the stagnant point region of a spinning sphere: a numerical exploration\",\"authors\":\"Raju Bag, Prabir Kumar Kundu\",\"doi\":\"10.1088/1873-7005/ad6a38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this article is to invent the impact of inconstant properties of fluids on the nanofluidic stream towards the stagnation area of a revolving sphere. The motion is treated as an unsteady radiated flow with a nonlinear sort of heat radiation. It is presumed to have Brownian motion & thermophoretic impact in our flow model. Additionally, a variable magnetic influence is addressed perpendicularly on the spherical surface. A suitable alteration has been applied to make dimensionless of our prime flow profiles. The translated equations and the limiting restrictions are solved through a numerical approach. The well established method RK4 Shooting technique is utilized here with Maple 2017 software. In the exploration of the consequences of requisite parameters on thermal, concentration, and flow features, numerous schematics are involved. The nature of physical quantities like Nusselt numbers, friction coefficients, and Sherwood numbers is stated in a tabular manner. It is perceived from the outcomes that the fluid velocity towards the <italic toggle=\\\"yes\\\">x</italic>-direction is reduced for the variable viscosity parameter, whereas the unsteadiness parameter promotes it. The enhancement of inconstant thermal conductivity brings a positive influence on the thermal profile of fluid. Nusselt number drops against the thermal radiation & variable viscosity with a rates 4.50% and 25.88% correspondingly.\",\"PeriodicalId\":56311,\"journal\":{\"name\":\"Fluid Dynamics Research\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluid Dynamics Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1088/1873-7005/ad6a38\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluid Dynamics Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1088/1873-7005/ad6a38","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
摘要
本文旨在研究流体的不稳定特性对纳米流体流向旋转球体停滞区的影响。该运动被视为具有非线性热辐射的不稳定辐射流。在我们的流动模型中,假定它具有布朗运动 & 热传导影响。此外,还处理了垂直于球面的可变磁场影响。我们对主要流动剖面进行了适当的修改,以实现无量纲化。转化方程和限制条件通过数值方法求解。这里使用的是 Maple 2017 软件中成熟的 RK4 射击技术。在探索必要参数对热量、浓度和流动特征的影响时,涉及到许多示意图。努塞尔特数、摩擦系数和舍伍德数等物理量的性质以表格形式列出。从结果中可以看出,在粘度参数可变的情况下,流体向 x 方向的速度会降低,而不稳定性参数则会提高。不稳定热导率的增强对流体的热曲线产生了积极影响。在热辐射& 和可变粘度的作用下,努塞尔特数分别下降了 4.50%和 25.88%。
Analysis of variable fluidic properties with varying magnetic influence on an unsteady radiated nanofluid flow on the stagnant point region of a spinning sphere: a numerical exploration
The purpose of this article is to invent the impact of inconstant properties of fluids on the nanofluidic stream towards the stagnation area of a revolving sphere. The motion is treated as an unsteady radiated flow with a nonlinear sort of heat radiation. It is presumed to have Brownian motion & thermophoretic impact in our flow model. Additionally, a variable magnetic influence is addressed perpendicularly on the spherical surface. A suitable alteration has been applied to make dimensionless of our prime flow profiles. The translated equations and the limiting restrictions are solved through a numerical approach. The well established method RK4 Shooting technique is utilized here with Maple 2017 software. In the exploration of the consequences of requisite parameters on thermal, concentration, and flow features, numerous schematics are involved. The nature of physical quantities like Nusselt numbers, friction coefficients, and Sherwood numbers is stated in a tabular manner. It is perceived from the outcomes that the fluid velocity towards the x-direction is reduced for the variable viscosity parameter, whereas the unsteadiness parameter promotes it. The enhancement of inconstant thermal conductivity brings a positive influence on the thermal profile of fluid. Nusselt number drops against the thermal radiation & variable viscosity with a rates 4.50% and 25.88% correspondingly.
期刊介绍:
Fluid Dynamics Research publishes original and creative works in all fields of fluid dynamics. The scope includes theoretical, numerical and experimental studies that contribute to the fundamental understanding and/or application of fluid phenomena.